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Background

Models based on the Transformer architecture have become the de facto standard
for Al workloads. The versatility of the Transformer can be explained by an attention
mechanism tracking correlations between tokens at different positionsin a
sequence. Originally conceived with text tokens for language translation, Large
Language Models (LLMs) using the Transformer architecture are now adapted to
solve almost any natural language processing (NLP) task, and have now been
generalized to be Large Multimodal Models (LMMs) that process text and images,
both still and video. We will discuss the text LLMs here, but the invention is
applicable to any model employing the Transformer architecture, or any application
that can benefit from edge caching.

An LLM processes a text prompt by first converting it to a sequence of tokens
representing the semantics of the text. Next comes the prefilling phase, where this
token sequence is passed through the attention layers of the LLM. The prefilling
phase results in an output token sequence that is generated one token at a time
(next token prediction). Converting the generated tokens to text again and
controlling which token to produce given probability distributions over tokens is
referred to the decoding phase. The whole process of generating an output text from
a prompt text is referred to as inference.

With large prompts that are repetitive across generations, e.g. containing entire
documents like in retrieval augmented generation (RAG) or long chat histories
(contexts) the conversion of a token sequence to an output suffers large overheads.

In general, the attention layers cause the computational overhead to increase
quadratically with the length of the context. As a result, early work to optimize this
step cached the LLM intermediate outputs for common contexts in what is called
key value caches (KVC), popularized in a seminal work called PagedAttention [1].

KVC stores key value caches for fixed blocks of context like how an operating
system uses page caching. One important feature of this cache is that the
sequence of blocks matters. So, a prompt is converted to an ordered sequence of
blocks. When a new prompt appears it is enough to find a matching block in the
cache that is furthest toward the end of the sequence of blocks, because that
means that the entire preceding set of blocks to the matching block are also in the
cache. Even for very small models (1B) the KVC for a small block (128 tokens) can
be rather large (~3MB). The cache retrieval must be fast (from memory) so as not to
defeat the purpose of speeding up the GPU computation. A trend to scale the
inference to large models and contexts is to store the KVC across a memory
hierarchy, such as GPU, CPU, network storage, cold disk storage and move the
caches between the layers based on various last recently used (LRU) eviction



policies. For large contexts, the usual arguments for speed and computational
complexity apply when comparing computation from scratch (quadratic
complexity) versus retrieving from a cache, which is typically a lookup from a hash
table (O(1) complexity). Thus, by trading memory storage for computation, caching
can improve the latency and computational complexity of inference by an order of
magnitude.

Recent advancement of low-earth-orbit (LEO) constellations for communication
and earth observation has given rise to the concept of LEO edge, making use of the
vast computational resources circling in orbit across the earth. Even full orbit-
bound data centers have been proposed [2]. The advantage of a LEO constellation
is that itis a highly distributed system with thousands of satellites connected with
free-space optics inter satellite links (ISL) and always a just a hop a way from any
point on earth. Highly directional phased array antennas have pushed down the
latency to single digit milliseconds for ground communication. The key challenge is
mobility where a single satellite may only be visible from a point on earth for 5-10
minutes.

The proposed invention expands the scope of cache memory to include the memory
on LEO satellites. Itthus increases cache hits which in turn improves speed of
inference for LLMs, in particular the time to first token (TTFT) in the prefilling stage.
This benefit applies to LLMs hosted both terrestrially and on satellites, and itis
generalizable not just to key value caches for LLMs but to any use case with a cache
distributed over multiple locations that needs to be accessed and set quickly.

Description

We propose a LEO satellite constellation hosted KVC that can fit seamlessly into
current KVC memory hierarchies, to optimize LLM inference in general and prefilling
in particular. Rather than hosting the KV Lists of an LLM during token generation, we
find, pullin and deploy (in the GPU or other computing hardware when the inference
computation takes place) the most appropriate full KVC of all KV Lists given a
prompt, before running the inference computation on the prompt. We present a
protocol for two use cases, LLMs hosted on earth and LLMs hosted on board
satellites in a constellation. Finally, the invention is applicable to reducing the
latency for any cache (not just a KVC for LLMs) that is distributed over different
physical locations by exploiting the very low latencies of LEO links (see Table 1).
Motivation A key-value cache can be stored in memory hierarchies, and the
invention can be integrated into a stack of both faster and slower memory.



Table 1 is an approximate latency map of different memory types supported by the
invention.

Table 1
Type Latency ‘
CPU 10-15 nanoseconds
GPU 50-100 nanoseconds
RDMA 2-5 microseconds
SSD 20-200 microseconds
HDD 2-20 milliseconds
NAS 30-40 milliseconds
LEO (current) 20-50 milliseconds
LEO (theoretical with laser) 2-4 milliseconds

We also note that from a single point on Earth, as many as 10-20 LEO satellites may
be visible, which would allow direct communication in parallel with multiple
satellites at a time.

The above numbers in Table 1 are for ground-to-satellite communication. In the on-
board LLM case, for FSO in the LEO constellation ISL the latency is determined by
inter-orbital and intra-orbital distances and speed of light. The distances can be
computed with the following equations from [7]. Note that the within-orb latency
does not change over time whereas the inter-orb latency is periodic.

Dy(t) = (r5 + h)\lz [1 — cos (%)] [cos2 (211% + ZML}C) + cos?(i) sin? (211% + %)]

| 21
Dy = (rg + h) ||2 [1 — cos (—)}
M
N

DN is the distance between neighbors in different orbital planes, DM the distance
between neighbors in the same orbital plane, rE the radius of the earth, h the
altitude of the satellites in the constellation, N the number of orbital planes in the
constellation, M the number of satellites in an orbital plane in the constellation, T
the orbital period, i the orbital inclination, f the Walker phase, and t the time
variable.

This table from [7] gives examples of N and M for different constellations.



Table 2: table from [7] with examples of N and M for different constellations

LEO Constellation N M Altitude Inclination
network (km) (degrees)
Starlink A 72 22 550 53.0
Starlink B 5 75 1275 81.0

Kuiper A 34 34 630 51.9
Kuiper B 28 28 590 33.0




The figures below illustrate the intra-plane latency as a function of M and h.
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Figure 1. Dependence of the intra-plane latency D_M on M and h: (a) three-
dimensional plot; (b) contour plots of D_M vs h for different fixed values of M.

Extrapolating the numbers from these simulations, we can see that we get roughly
the a latency between SSD and HDD (See Table 1) with about 50+ satellites in a
plane or 50+ planes (<2 milliseconds).

Basic Protocol

Prompts are splitinto token blocks of a fixed size (e.g. 128 tokens). We start by
hashing the first token block, then for the second token block, we hash that token
block together with the hash of the first token block. Thus the hash for the second
token block is actually the hash of the first two token blocks. Similarly, we hash the
third token block together with the hash for the second token block (which is
actually the hash of the first two token blocks), and so on, such that the hash for a
token block in the cache is actually a hash of all the token blocks up to and
including that token block. When finding a matching KVC it is thus enough to find
the matching hash that is furthest to the end of the hash list. The lookup inputis an
ordered list of hashes representing the input prompt.

Given that these blocks can be large (several MB or GB even for modestly sized
LLMs) we further split up each block into chunk s of fixed byte size (e.g. 6k bytes).
Mapping from a chunk to a target server and how to look up a chunk can be done
differently depending on the use case, discussed below. However it is worth noting
that a failed lookup of a single chunk is enough to determine that the KVC does not
exist for the queried block.

A baseline implementation of the protocol just computes the server (virtual chunk
destination that will be mapped to a physical destination such as a satellite) to
store on as chunk_id mod n where n is the max index of the server to host the chunk.
Note that this allows for parallelism both in setting and getting a single KVC.

Each KVC cache entry is hence identified by the tuple (block_hash, chunk_id).
The basic protocol was inspired by [9].
LEO Constellation Model

A LEO constellation comprises a set of satellites orbiting earth in near circular
paths. A constellation is identified by an altitude and an inclination angle shared
across all its orbital paths. Each orbital path hosts the same number of equidistant
satellites in a grid formation. There is wraparound both within a plane (first and last
satellite can communicate) and across planes (first and last planes can



communicate) to form a 2D-Torus Mesh often referred to as +GRID. Even though ISL
communication is performed via free space optics, geography matters and the
closer the satellite is that hosts the cache to the one requesting it the better and
more reliable the latency will be.

In general, we cannot even assume that the whole cache of chunks for a block
resides within a single satellite. Distributing the cache saves memory but also
improves parallelism in setting and getting values. A cache miss is not catastrophic
as a KV cache can always be recomputed. So, while redundancy is not required for
reliability, it can improve latency. The more blocks you can cache, the higher
likelihood of cache hits, and therefore the lower the inference time.

The networking model of a 2D-Torus mesh with 4 ISL links from each satellite is
called +GRID and illustrated in Figure 2 below (from [7])
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Figure 2. The +GRID networking model, so named because the 4 ISL links from
each satellite look like a plus sign. Note that the topology is a torus, so the
topmost and bottom-most rows wrap around, as do the leftmost and rightmost
columns.



Although the ideal architecture would be to connect and communicate directly with
all line-of-sight satellites from the ground directly, the protocolis structured such
that all the cache endpoints are within the fewest possible routing hops from the
closest satellite, which could be used if the line of sight (LOS) is obstructed.

Interface

The abstract interface provides two operations to obtain a KVC for a prompt (or
empty KVC if none was found) and to add blocks in the cache based on a prompt.
Both operations operate on a given model and tokenizer. If any parameter changes
in the model, the cache is no longer valid. Similarly, a different tokenizer would also
invalidate the cache.

class KVCManager:
init (model:LLMModel, tokenizer:LLMTokenizer)
add_blocks (prompt:String)
get_cache (prompt:String) ->KVC

The KVC returned can be passed intomodel . generate calls to speed up
generations, often referred to as past key values. The KVC can be implemented to
be memory efficient by trading off accuracy using various quantization techniques.

Chunk to Server Mapping

Servers are virtual satellite destinations, and the number of servers determine how

the chunks are spread out in a deployment. The initial chunk is always stored in the

current closest LOS satellite. The server ids are then distributed around this pointin
concentric circles to lay out the chunks.

Migration

Once a new set of satellites are in LOS the chunks need to be migrated for efficient
retrieval. This can be done in parallel in each orbital plane.

Rotation Aware Caching

Servers are mapped to satellites left to right, top to bottom within a LOS grid. See
Figure 3.
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Figure 3. Orange area is LOS. Green circle is the satellite closest to the LLM.

This works best in the use case of a ground hosted LLM that has LOS to a large
number of satellites reliably (e.g. 10-20). Migration is done from the column furthest
to the right to the column furthest to the left. See Figure 4.
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Figure 4. lllustrating migration from the rightmost of the colored columns to the
leftmost colored column.

Hop Aware Caching Servers are mapped to satellites in concentric circles starting
from a given satellite, as shown in Figure 5. This works best when no migration is
necessary and the LLM is hosted on-board a fixed satellite.
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Figure 5. Labeling of concentric circles of servers around the satellite in the
center.



Note that the concentric circles and hops may be logical so that faster horizontal
within-plane hops can result in wider horizontal areas.

Rotation and Hop Aware Caching
Servers are mapped to satellites in concentric circles starting from a given satellite
and within a LOS grid. This works best in the ground to satellite scenario like the

rotation case below but where the satellites cannot be reached reliably wihin a
single hop from the ground.
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Figure 6. lllustrating rotation- and hop-aware caching. (a) Initially, the green
satellite (satellite 4 in orbital plane 3) is directly overhead. (b) Given the
direction of satellite movement, the column of satellites to its left (i.e., satellite
3in the orbital plane 3) will be directly overhead in a few minutes. Thus to
prevent chunks 6, 3, and 8 from going out of LOS, these chunks are migrated to
satellite 2 in orbital planes 2, 3, and 4.

In Figure 6, the orange shaded area represents line of sight (LOS) and the green
circle is the satellite thatis closest to the stationary LLM on earth. Chunks are
stored based on concentric “circles” based on hops with numbering starting in the
center, then proceeding clockwise with north first. As the satellites furthest to the
east move out of sight their chunks are migrated to the satellites about to enter LOS
on the west. In this case Satellite (sat 5,orb 2) migrates chunk 6 to (2,2), 3:(5,3)-
>(2,3) and 8:(5,4)->(2,4). Note that all these migrations can be done in parallel and
there is no harm in the chunk being stored in two satellites for some period of time.

Lastly, we note that if we predict a cache hit on a certain set of chunks at some
future time (for example, because of a predictive algorithm), then we can exploit the
fact that the set of satellites in the LOS at that future time is known exactly and
arrange to make those chunks available on those LOS satellites at that time.

Protocol:



Set KVC:

1. The promptis tokenized and splitinto equal-sized token blocks

2. Each blockis ordered and hashed based on the previous block hash and the
token listin the current block . The initial block has a null hash 0 as the
previous block hash.

3. Alookupis done for each block (See Get KVC protocol below) starting at the
last block and stopping when a match is found (alternatively we can use a
local radix tree, see below)

4. If no matchis found for a block the KVC for that block is split into fixed byte
chunks

5. Each chunkis mapped into a separate LOS satellite using chunk_id mod
num_los_sats, the one with the fewest hops store chunk_id 1

6. The mapping from server to chunk itis done with the current closest satellite
as chunk 1. Then follows a pattern left to right top to bottom in concentric
circles. When a satellite is about to exit the LOS region all chunks stored
need to be migrated to the satellite about to enter LOS in the same plane.

Setting Block + 1 Rotation Migration
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Figure 7. How chunks are created from blocks, mapped to logical server and
then satellites, and how the new satellite hosts for a chubnk can be computed
after a rotation.

Get KVC:

1. See Step 1inSetKVC
2. See Step 2inSetKVC



3. The block list of hashes is searched with a binary search for a hash with
chunk 1 within the satellite in LOS with fewest hops (or radix tree)

4. If amatchis found the higher ordered halfis searched

5. If amatchis not found the lower ordered half is searched

6. Ifthe higher ordered halfis a single hash and it is not found the search stops
with the result that the hash/block was not found and an empty KVC is used
in the generation

7. The latest (highest ordered block) match is retrieved and all the chunks for
that block are retrieved to reconstruct the KVC to be used in the generation

8. The lookups always start at the nearest satellite. It will return its chunk id and
based on that the shift left to right in chunk to server mapping is found and
the server for all other chunks can be computer and all chunks can be
queried in parallel.

Getting Block After 1 Rotation
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Figure 8. How a block can be recreated for chunks after one rotation. Note that
rotations are predicable based on knowing the time of block creation.

Chunk Eviction

When there is memory pressure, the LRU chunk will be evicted to make place for
new block chunks. As soon as one chunk is gone, the block it belongs to cannot be
retrieved and must be purged. Hence an eviction needs to be propagated to all the
satellites holding the same chunks or at least the orbital plane thatis used for
lookups. If a block only has one chunk, this is not an issue, and it could be a reason
to keep the chunk size large as a tradeoff for parallelism in retrieval and storage.



The advantage of the concentric circle of storage of chunks is that all the chunks
impacted by eviction are in the direct neighborhood of the chunk initially being
evicted, hence a simple gossip broadcast in all directions is sufficient. Alternatively,
lazy eviction can be implemented, where the lookup client will issue evictions when
chunks in a block are discovered to be missing.

Yet another policy is to do cleanup of chunks that are not complete periodically.
When chunks migrate, they can be evicted so there is a natural eviction as part of
the rotation synchronization as well.

Local Radix Block Index In the case of transformer KVC caching the ordered blocks
resulting from the prompt need to be queried using a longest prefix lookup. The last
block in the block list matching will have the cache we are interested in. The lookup
may be done sequentially or with some binary search, but as an optimization we
propose storing the block keys (not the values) in a Radix Tree (a.k.a radix trie or
prefix tree) locally were the LLM resides (on the ground or on-board the satellite).

An efficient lookup can thus be made in this local data structure to find out whether
the block exist. The database entry for the block can also store meta data such as
total number of chunks and the time of setting the value which would allow the

caller to compute where each chunk is currently located without having to query
any external satellites.

Eviction can either be done when a local lookup succeeds but the values are not
presentin the constellation or by propagating eviction broadcasts back to the LLM.

The figure below shows the full end-to-end process:
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Figure 9. End-To-End process from a prompt to a chunk lookup using a radix
tree.

We note that the radix tree lookup is an optional optimization, and it is the only part
that is specific to the Transformer (LLM KVC) application. All the other parts of the
protocol can be used as a general-purpose in-memory, Key Value Store (KVS) or
distributed HashTable for any data where the key can be converted to a string and
the value is an arbitrary, potentially large, byte sequence.

Summary

As Al models get increasingly deployed on the edge, there is a greater need for low-
latency access to, and distribution of Al model states on, edge devices. The industry
at large is trending toward a memory-first architecture to realize the lowest possible
latency for such access. This in turn means that there is a greater need than ever for
shared memory platforms. As we send an ever-increasing number of high-capacity
satellites into orbit with free space optics links to support communication and earth
observation use cases, LEO satellite constellations become an untapped resource
for distributed memory. The present invention proposes SkyMemory a solution for
Transformer Key Value caching to optimize LLM inference to deliver on that vision.
As network operators (both our members and other telcos) begin to deploy so-
called “Al factories” or Al distribution points in their plant to host or provide Al
services at the enterprise edge, this invention will allow for faster inference and
serving more queries and customers in a more efficient manner.

NVIDIA Jetson Nano GPU Prototype

We hosted a 1B parameter LLM (TinyLlama/TinyLlama-1.1B-Chat-v1.0) on an
NVIDIA Jetson Nano 8GB GPU and fed it a ~250-character prompt as context. It
resulted in 4x 128 token blocks of about 2.9MB each (with optimum-quanto 8bit
quantization). The blocks were split into 6k chunks before storage and retrieval. We
used 10 LOS cFS [8] satellites to stripe the chunks across. This resulted in a 30
token generation speedup from 6.2s to 4.9s or 21% when running the generation
without and with the cache respectively. For a HQQ quantizer the speedup was
about 24%.

Quantization No KVC (seconds) KVC (seconds)
Optimum Quanto 6.2 4.9
HQQ 10.2 7.8
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