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Background 

Models based on the Transformer architecture have become the de facto standard 

for AI workloads. The versatility of the Transformer can be explained by an attention 

mechanism tracking correlations between tokens at different positions in a 

sequence. Originally conceived with text tokens for language translation, Large 

Language Models (LLMs) using the Transformer architecture are now adapted to 

solve almost any natural language processing (NLP) task, and have now been 

generalized to be Large Multimodal Models (LMMs) that process text and images, 

both still and video.  We will discuss the text LLMs here, but the invention is 

applicable to any model employing the Transformer architecture, or any application 

that can benefit from edge caching. 

An LLM processes a text prompt by first converting it to a sequence of tokens 

representing the semantics of the text. Next comes the prefilling phase, where this 

token sequence is passed through the attention layers of the LLM. The prefilling 

phase results in an output token sequence that is generated one token at a time 

(next token prediction). Converting the generated tokens to text again and 

controlling which token to produce given probability distributions over tokens is 

referred to the decoding phase. The whole process of generating an output text from 

a prompt text is referred to as inference. 

With large prompts that are repetitive across generations, e.g. containing entire 

documents like in retrieval augmented generation (RAG) or long chat histories 

(contexts) the conversion of a token sequence to an output suffers large overheads. 

In general, the attention layers cause the computational overhead to increase 

quadratically with the length of the context. As a result, early work to optimize this 

step cached the LLM intermediate outputs for common contexts in what is called 

key value caches (KVC), popularized in a seminal work called PagedAttention [1]. 

KVC stores key value caches for fixed blocks of context like how an operating 

system uses page caching. One important feature of this cache is that the 

sequence of blocks matters. So, a prompt is converted to an ordered sequence of 

blocks. When a new prompt appears it is enough to find a matching block in the 

cache that is furthest toward the end of the sequence of blocks, because that 

means that the entire preceding set of blocks to the matching block are also in the 

cache. Even for very small models (1B) the KVC for a small block (128 tokens) can 

be rather large (~3MB). The cache retrieval must be fast (from memory) so as not to 

defeat the purpose of speeding up the GPU computation. A trend to scale the 

inference to large models and contexts is to store the KVC across a memory 

hierarchy, such as GPU, CPU, network storage, cold disk storage and move the 

caches between the layers based on various last recently used (LRU) eviction 



 

 

  

 

policies. For large contexts, the usual arguments for speed and computational 

complexity apply when comparing computation from scratch (quadratic 

complexity) versus retrieving from a cache, which is typically a lookup from a hash 

table (O(1) complexity).  Thus, by trading memory storage for computation, caching 

can improve the latency and computational complexity of inference by an order of 

magnitude. 

Recent advancement of low-earth-orbit (LEO) constellations for communication 

and earth observation has given rise to the concept of LEO edge, making use of the 

vast computational resources circling in orbit across the earth. Even full orbit-

bound data centers have been proposed [2]. The advantage of a LEO constellation 

is that it is a highly distributed system with thousands of satellites connected with 

free-space optics inter satellite links (ISL) and always a just a hop a way from any 

point on earth. Highly directional phased array antennas have pushed down the 

latency to single digit milliseconds for ground communication. The key challenge is 

mobility where a single satellite may only be visible from a point on earth for 5-10 

minutes. 

The proposed invention expands the scope of cache memory to include the memory 

on LEO satellites.  It thus increases cache hits which in turn improves speed of 

inference for LLMs, in particular the time to first token (TTFT) in the prefilling stage.  

This benefit applies to LLMs hosted both terrestrially and on satellites, and it is 

generalizable not just to key value caches for LLMs but to any use case with a cache 

distributed over multiple locations that needs to be accessed and set quickly. 

 

Description 

We propose a LEO satellite constellation hosted KVC that can fit seamlessly into 

current KVC memory hierarchies, to optimize LLM inference in general and prefilling 

in particular. Rather than hosting the KV Lists of an LLM during token generation, we 

find, pull in and deploy (in the GPU or other computing hardware when the inference 

computation takes place) the most appropriate full KVC of all KV Lists given a 

prompt, before running the inference computation on the prompt. We present a 

protocol for two use cases, LLMs hosted on earth and LLMs hosted on board 

satellites in a constellation. Finally, the invention is applicable to reducing the 

latency for any cache (not just a KVC for LLMs) that is distributed over different 

physical locations by exploiting the very low latencies of LEO links (see Table 1). 

Motivation A key-value cache can be stored in memory hierarchies, and the 

invention can be integrated into a stack of both faster and slower memory. 



 

 

  

 

Table 1 is an approximate latency map of different memory types supported by the 

invention. 

Table 1 

Type Latency 

CPU 10-15 nanoseconds 

GPU 50-100 nanoseconds 

RDMA 2-5 microseconds 

SSD 20-200 microseconds 

HDD 2-20 milliseconds 

NAS 30-40 milliseconds 

LEO (current) 20-50 milliseconds 

LEO (theoretical with laser) 2-4 milliseconds 

We also note that from a single point on Earth, as many as 10-20 LEO satellites may 

be visible, which would allow direct communication in parallel with multiple 

satellites at a time. 

The above numbers in Table 1 are for ground-to-satellite communication. In the on-

board LLM case, for FSO in the LEO constellation ISL the latency is determined by 

inter-orbital and intra-orbital distances and speed of light. The distances can be 

computed with the following equations from [7]. Note that the within-orb latency 

does not change over time whereas the inter-orb latency is periodic. 

DN is the distance between neighbors in different orbital planes, DM the distance 

between neighbors in the same orbital plane, rE the radius of the earth, h the 

altitude of the satellites in the constellation, N the number of orbital planes in the 

constellation, M the number of satellites in an orbital plane in the constellation, T 

the orbital period, i the orbital inclination, f the Walker phase, and t the time 

variable. 

This table from [7] gives examples of N and M for different constellations. 



 

 

  

 

Table 2: table from [7] with examples of N and M for different constellations 

LEO 

network 

Constellation N M Altitude 

(km) 

Inclination 

(degrees) 

Starlink A 72 22 550 53.0 

Starlink B 5 75 1275 81.0 

Kuiper A 34 34 630 51.9 

Kuiper B 28 28 590 33.0 

 



 

 

  

 

The figures below illustrate the intra-plane latency as a function of M and h. 

  

(a) 

 

(b) 



 

 

  

 

Figure 1. Dependence of the intra-plane latency D_M on M and h: (a) three-

dimensional plot; (b) contour plots of D_M vs h for different fixed values of M. 

Extrapolating the numbers from these simulations, we can see that we get roughly 

the a latency between SSD and HDD (See Table 1) with about 50+ satellites in a 

plane or 50+ planes (<2 milliseconds). 

Basic Protocol  

Prompts are split into token blocks of a fixed size (e.g. 128 tokens). We start by 

hashing the first token block, then for the second token block, we hash that token 

block together with the hash of the first token block. Thus the hash for the second 

token block is actually the hash of the first two token blocks. Similarly, we hash the 

third token block together with the hash for the second token block (which is 

actually the hash of the first two token blocks), and so on, such that the hash for a 

token block in the cache is actually a hash of all the token blocks up to and 

including that token block. When finding a matching KVC it is thus enough to find 

the matching hash that is furthest to the end of the hash list. The lookup input is an 

ordered list of hashes representing the input prompt.  

Given that these blocks can be large (several MB or GB even for modestly sized 

LLMs) we further split up each block into chunk s of fixed byte size (e.g. 6k bytes). 

Mapping from a chunk to a target server and how to look up a chunk can be done 

differently depending on the use case, discussed below. However it is worth noting 

that a failed lookup of a single chunk is enough to determine that the KVC does not 

exist for the queried block. 

 A baseline implementation of the protocol just computes the server (virtual chunk 

destination that will be mapped to a physical destination such as a satellite) to 

store on as chunk_id mod n where n is the max index of the server to host the chunk. 

Note that this allows for parallelism both in setting and getting a single KVC.  

Each KVC cache entry is hence identified by the tuple (block_hash, chunk_id).  

The basic protocol was inspired by [9].  

LEO Constellation Model 

 A LEO constellation comprises a set of satellites orbiting earth in near circular 

paths. A constellation is identified by an altitude and an inclination angle shared 

across all its orbital paths. Each orbital path hosts the same number of equidistant 

satellites in a grid formation. There is wraparound both within a plane (first and last 

satellite can communicate) and across planes (first and last planes can 



 

 

  

 

communicate) to form a 2D-Torus Mesh often referred to as +GRID. Even though ISL 

communication is performed via free space optics, geography matters and the 

closer the satellite is that hosts the cache to the one requesting it the better and 

more reliable the latency will be. 

In general, we cannot even assume that the whole cache of chunks for a block 

resides within a single satellite. Distributing the cache saves memory but also 

improves parallelism in setting and getting values. A cache miss is not catastrophic 

as a KV cache can always be recomputed. So, while redundancy is not required for 

reliability, it can improve latency. The more blocks you can cache, the higher 

likelihood of cache hits, and therefore the lower the inference time. 

The networking model of a 2D-Torus mesh with 4 ISL links from each satellite is 

called +GRID and illustrated in Figure 2 below (from [7]) 

 

Figure 2. The +GRID networking model, so named because the 4 ISL links from 

each satellite look like a plus sign. Note that the topology is a torus, so the 

topmost and bottom-most rows wrap around, as do the leftmost and rightmost 

columns. 



 

 

  

 

Although the ideal architecture would be to connect and communicate directly with 

all line-of-sight satellites from the ground directly, the protocol is structured such 

that all the cache endpoints are within the fewest possible routing hops from the 

closest satellite, which could be used if the line of sight (LOS) is obstructed.  

Interface  

The abstract interface provides two operations to obtain a KVC for a prompt (or 

empty KVC if none was found) and to add blocks in the cache based on a prompt. 

Both operations operate on a given model and tokenizer. If any parameter changes 

in the model, the cache is no longer valid. Similarly, a different tokenizer would also 

invalidate the cache. 

class KVCManager:  

init(model:LLMModel, tokenizer:LLMTokenizer)  

add_blocks(prompt:String)  

get_cache(prompt:String) ->KVC 

The KVC returned can be passed into model.generate calls to speed up 

generations, often referred to as past key values. The KVC can be implemented to 

be memory efficient by trading off accuracy using various quantization techniques. 

Chunk to Server Mapping  

Servers are virtual satellite destinations, and the number of servers determine how 

the chunks are spread out in a deployment. The initial chunk is always stored in the 

current closest LOS satellite. The server ids are then distributed around this point in 

concentric circles to lay out the chunks. 

Migration  

Once a new set of satellites are in LOS the chunks need to be migrated for efficient 

retrieval. This can be done in parallel in each orbital plane. 

Rotation Aware Caching  

Servers are mapped to satellites left to right, top to bottom within a LOS grid. See 

Figure 3. 



 

 

  

 

 

Figure 3. Orange area is LOS. Green circle is the satellite closest to the LLM. 

 

This works best in the use case of a ground hosted LLM that has LOS to a large 

number of satellites reliably (e.g. 10-20). Migration is done from the column furthest 

to the right to the column furthest to the left. See Figure 4. 



 

 

  

 

 

Figure 4. Illustrating migration from the rightmost of the colored columns to the 

leftmost colored column. 

Hop Aware Caching Servers are mapped to satellites in concentric circles starting 

from a given satellite, as shown in Figure 5. This works best when no migration is 

necessary and the LLM is hosted on-board a fixed satellite. 

 

Figure 5. Labeling of concentric circles of servers around the satellite in the 

center. 



 

 

  

 

Note that the concentric circles and hops may be logical so that faster horizontal 

within-plane hops can result in wider horizontal areas. 

Rotation and Hop Aware Caching  

Servers are mapped to satellites in concentric circles starting from a given satellite 

and within a LOS grid. This works best in the ground to satellite scenario like the 

rotation case below but where the satellites cannot be reached reliably wihin a 

single hop from the ground. 

 

(a) 



 

 

  

 

 

(b) 

Figure 6. Illustrating rotation- and hop-aware caching. (a) Initially, the green 

satellite (satellite 4 in orbital plane 3) is directly overhead. (b) Given the 

direction of satellite movement, the column of satellites to its left (i.e., satellite 

3 in the orbital plane 3) will be directly overhead in a few minutes. Thus to 

prevent chunks 6, 3, and 8 from going out of LOS, these chunks are migrated to 

satellite 2 in orbital planes 2, 3, and 4. 

In Figure 6, the orange shaded area represents line of sight (LOS) and the green 

circle is the satellite that is closest to the stationary LLM on earth. Chunks are 

stored based on concentric “circles” based on hops with numbering starting in the 

center, then proceeding clockwise with north first. As the satellites furthest to the 

east move out of sight their chunks are migrated to the satellites about to enter LOS 

on the west. In this case Satellite (sat 5,orb 2) migrates chunk 6 to (2,2), 3:(5,3)-

>(2,3) and 8:(5,4)->(2,4). Note that all these migrations can be done in parallel and 

there is no harm in the chunk being stored in two satellites for some period of time. 

Lastly, we note that if we predict a cache hit on a certain set of chunks at some 

future time (for example, because of a predictive algorithm), then we can exploit the 

fact that the set of satellites in the LOS at that future time is known exactly and 

arrange to make those chunks available on those LOS satellites at that time. 

Protocol:  



 

 

  

 

Set KVC:  

1. The prompt is tokenized and split into equal-sized token blocks  

2. Each block is ordered and hashed based on the previous block hash and the 

token list in the current block . The initial block has a null hash 0 as the 

previous block hash. 

3. A lookup is done for each block (See Get KVC protocol below) starting at the 

last block and stopping when a match is found (alternatively we can use a 

local radix tree, see below)  

4. If no match is found for a block the KVC for that block is split into fixed byte 

chunks  

5. Each chunk is mapped into a separate LOS satellite using chunk_id mod 

num_los_sats, the one with the fewest hops store chunk_id 1  

6. The mapping from server to chunk it is done with the current closest satellite 

as chunk 1. Then follows a pattern left to right top to bottom in concentric 

circles. When a satellite is about to exit the LOS region all chunks stored 

need to be migrated to the satellite about to enter LOS in the same plane. 

 

Figure 7. How chunks are created from blocks, mapped to logical server and 

then satellites, and how the new satellite hosts for a chubnk can be computed 

after a rotation. 

Get KVC:  

1. See Step 1 in Set KVC  

2. See Step 2 in Set KVC  



 

 

  

 

3. The block list of hashes is searched with a binary search for a hash with 

chunk 1 within the satellite in LOS with fewest hops (or radix tree) 

4. If a match is found the higher ordered half is searched  

5. If a match is not found the lower ordered half is searched  

6. If the higher ordered half is a single hash and it is not found the search stops 

with the result that the hash/block was not found and an empty KVC is used 

in the generation  

7. The latest (highest ordered block) match is retrieved and all the chunks for 

that block are retrieved to reconstruct the KVC to be used in the generation  

8. The lookups always start at the nearest satellite. It will return its chunk id and 

based on that the shift left to right in chunk to server mapping is found and 

the server for all other chunks can be computer and all chunks can be 

queried in parallel. 

 

Figure 8. How a block can be recreated for chunks after one rotation. Note that 

rotations are predicable based on knowing the time of block creation. 

Chunk Eviction  

When there is memory pressure, the LRU chunk will be evicted to make place for 

new block chunks. As soon as one chunk is gone, the block it belongs to cannot be 

retrieved and must be purged. Hence an eviction needs to be propagated to all the 

satellites holding the same chunks or at least the orbital plane that is used for 

lookups. If a block only has one chunk, this is not an issue, and it could be a reason 

to keep the chunk size large as a tradeoff for parallelism in retrieval and storage.  



 

 

  

 

The advantage of the concentric circle of storage of chunks is that all the chunks 

impacted by eviction are in the direct neighborhood of the chunk initially being 

evicted, hence a simple gossip broadcast in all directions is sufficient. Alternatively, 

lazy eviction can be implemented, where the lookup client will issue evictions when 

chunks in a block are discovered to be missing.  

Yet another policy is to do cleanup of chunks that are not complete periodically. 

When chunks migrate, they can be evicted so there is a natural eviction as part of 

the rotation synchronization as well. 

Local Radix Block Index In the case of transformer KVC caching the ordered blocks 

resulting from the prompt need to be queried using a longest prefix lookup. The last 

block in the block list matching will have the cache we are interested in. The lookup 

may be done sequentially or with some binary search, but as an optimization we 

propose storing the block keys (not the values) in a Radix Tree (a.k.a radix trie or 

prefix tree) locally were the LLM resides (on the ground or on-board the satellite). 

An efficient lookup can thus be made in this local data structure to find out whether 

the block exist. The database entry for the block can also store meta data such as 

total number of chunks and the time of setting the value which would allow the 

caller to compute where each chunk is currently located without having to query 

any external satellites. 

Eviction can either be done when a local lookup succeeds but the values are not 

present in the constellation or by propagating eviction broadcasts back to the LLM. 

The figure below shows the full end-to-end process: 

 



 

 

  

 

Figure 9. End-To-End process from a prompt to a chunk lookup using a radix 

tree. 

We note that the radix tree lookup is an optional optimization, and it is the only part 

that is specific to the Transformer (LLM KVC) application. All the other parts of the 

protocol can be used as a general-purpose in-memory, Key Value Store (KVS) or 

distributed HashTable for any data where the key can be converted to a string and 

the value is an arbitrary, potentially large, byte sequence. 

Summary 

As AI models get increasingly deployed on the edge, there is a greater need for low-

latency access to, and distribution of AI model states on, edge devices. The industry 

at large is trending toward a memory-first architecture to realize the lowest possible 

latency for such access. This in turn means that there is a greater need than ever for 

shared memory platforms. As we send an ever-increasing number of high-capacity 

satellites into orbit with free space optics links to support communication and earth 

observation use cases, LEO satellite constellations become an untapped resource 

for distributed memory. The present invention proposes SkyMemory a solution for 

Transformer Key Value caching to optimize LLM inference to deliver on that vision. 

As network operators (both our members and other telcos) begin to deploy so-

called “AI factories” or AI distribution points in their plant to host or provide AI 

services at the enterprise edge, this invention will allow for faster inference and 

serving more queries and customers in a more efficient manner. 

NVIDIA Jetson Nano GPU Prototype 

We hosted a 1B parameter LLM (TinyLlama/TinyLlama-1.1B-Chat-v1.0) on an 

NVIDIA Jetson Nano 8GB GPU and fed it a ~250-character prompt as context. It 

resulted in 4x 128 token blocks of about 2.9MB each (with optimum-quanto 8bit 

quantization). The blocks were split into 6k chunks before storage and retrieval. We 

used 10 LOS cFS [8] satellites to stripe the chunks across. This resulted in a 30 

token generation speedup from 6.2s to 4.9s or 21% when running the generation 

without and with the cache respectively. For a HQQ quantizer the speedup was 

about 24%. 

Quantization No KVC (seconds) KVC (seconds) 

Optimum Quanto 6.2 4.9 

HQQ 10.2 7.8 
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