
SKY MEMORY: USING A SATELLITE CONSTELLATION AS DISTRIBUTED MEMORY

INVENTORS:

THOMAS SANDHOLM

SAYAN MUKHERJEE

LIN CHENG

BERNARDO HUBERMAN

Background

Models based on the Transformer architecture have become the de facto standard

for AI workloads. The versatility of the Transformer can be explained by an attention

mechanism tracking correlations between tokens at different positions in a

sequence. Originally conceived with text tokens for language translation, Large

Language Models (LLMs) using the Transformer architecture are now adapted to

solve almost any natural language processing (NLP) task, and have now been

generalized to be Large Multimodal Models (LMMs) that process text and images,

both still and video. We will discuss the text LLMs here, but the invention is

applicable to any model employing the Transformer architecture, or any application

that can benefit from edge caching.

An LLM processes a text prompt by first converting it to a sequence of tokens

representing the semantics of the text. Next comes the prefilling phase, where this

token sequence is passed through the attention layers of the LLM. The prefilling

phase results in an output token sequence that is generated one token at a time

(next token prediction). Converting the generated tokens to text again and

controlling which token to produce given probability distributions over tokens is

referred to the decoding phase. The whole process of generating an output text from

a prompt text is referred to as inference.

With large prompts that are repetitive across generations, e.g. containing entire

documents like in retrieval augmented generation (RAG) or long chat histories

(contexts) the conversion of a token sequence to an output suffers large overheads.

In general, the attention layers cause the computational overhead to increase

quadratically with the length of the context. As a result, early work to optimize this

step cached the LLM intermediate outputs for common contexts in what is called

key value caches (KVC), popularized in a seminal work called PagedAttention [1].

KVC stores key value caches for fixed blocks of context like how an operating

system uses page caching. One important feature of this cache is that the

sequence of blocks matters. So, a prompt is converted to an ordered sequence of

blocks. When a new prompt appears it is enough to find a matching block in the

cache that is furthest toward the end of the sequence of blocks, because that

means that the entire preceding set of blocks to the matching block are also in the

cache. Even for very small models (1B) the KVC for a small block (128 tokens) can

be rather large (~3MB). The cache retrieval must be fast (from memory) so as not to

defeat the purpose of speeding up the GPU computation. A trend to scale the

inference to large models and contexts is to store the KVC across a memory

hierarchy, such as GPU, CPU, network storage, cold disk storage and move the

caches between the layers based on various last recently used (LRU) eviction

policies. For large contexts, the usual arguments for speed and computational

complexity apply when comparing computation from scratch (quadratic

complexity) versus retrieving from a cache, which is typically a lookup from a hash

table (O(1) complexity). Thus, by trading memory storage for computation, caching

can improve the latency and computational complexity of inference by an order of

magnitude.

Recent advancement of low-earth-orbit (LEO) constellations for communication

and earth observation has given rise to the concept of LEO edge, making use of the

vast computational resources circling in orbit across the earth. Even full orbit-

bound data centers have been proposed [2]. The advantage of a LEO constellation

is that it is a highly distributed system with thousands of satellites connected with

free-space optics inter satellite links (ISL) and always a just a hop a way from any

point on earth. Highly directional phased array antennas have pushed down the

latency to single digit milliseconds for ground communication. The key challenge is

mobility where a single satellite may only be visible from a point on earth for 5-10

minutes.

The proposed invention expands the scope of cache memory to include the memory

on LEO satellites. It thus increases cache hits which in turn improves speed of

inference for LLMs, in particular the time to first token (TTFT) in the prefilling stage.

This benefit applies to LLMs hosted both terrestrially and on satellites, and it is

generalizable not just to key value caches for LLMs but to any use case with a cache

distributed over multiple locations that needs to be accessed and set quickly.

Description

We propose a LEO satellite constellation hosted KVC that can fit seamlessly into

current KVC memory hierarchies, to optimize LLM inference in general and prefilling

in particular. Rather than hosting the KV Lists of an LLM during token generation, we

find, pull in and deploy (in the GPU or other computing hardware when the inference

computation takes place) the most appropriate full KVC of all KV Lists given a

prompt, before running the inference computation on the prompt. We present a

protocol for two use cases, LLMs hosted on earth and LLMs hosted on board

satellites in a constellation. Finally, the invention is applicable to reducing the

latency for any cache (not just a KVC for LLMs) that is distributed over different

physical locations by exploiting the very low latencies of LEO links (see Table 1).

Motivation A key-value cache can be stored in memory hierarchies, and the

invention can be integrated into a stack of both faster and slower memory.

Table 1 is an approximate latency map of different memory types supported by the

invention.

Table 1

Type Latency

CPU 10-15 nanoseconds

GPU 50-100 nanoseconds

RDMA 2-5 microseconds

SSD 20-200 microseconds

HDD 2-20 milliseconds

NAS 30-40 milliseconds

LEO (current) 20-50 milliseconds

LEO (theoretical with laser) 2-4 milliseconds

We also note that from a single point on Earth, as many as 10-20 LEO satellites may

be visible, which would allow direct communication in parallel with multiple

satellites at a time.

The above numbers in Table 1 are for ground-to-satellite communication. In the on-

board LLM case, for FSO in the LEO constellation ISL the latency is determined by

inter-orbital and intra-orbital distances and speed of light. The distances can be

computed with the following equations from [7]. Note that the within-orb latency

does not change over time whereas the inter-orb latency is periodic.

DN is the distance between neighbors in different orbital planes, DM the distance

between neighbors in the same orbital plane, rE the radius of the earth, h the

altitude of the satellites in the constellation, N the number of orbital planes in the

constellation, M the number of satellites in an orbital plane in the constellation, T

the orbital period, i the orbital inclination, f the Walker phase, and t the time

variable.

This table from [7] gives examples of N and M for different constellations.

Table 2: table from [7] with examples of N and M for different constellations

LEO

network

Constellation N M Altitude

(km)

Inclination

(degrees)

Starlink A 72 22 550 53.0

Starlink B 5 75 1275 81.0

Kuiper A 34 34 630 51.9

Kuiper B 28 28 590 33.0

The figures below illustrate the intra-plane latency as a function of M and h.

(a)

(b)

Figure 1. Dependence of the intra-plane latency D_M on M and h: (a) three-

dimensional plot; (b) contour plots of D_M vs h for different fixed values of M.

Extrapolating the numbers from these simulations, we can see that we get roughly

the a latency between SSD and HDD (See Table 1) with about 50+ satellites in a

plane or 50+ planes (<2 milliseconds).

Basic Protocol

Prompts are split into token blocks of a fixed size (e.g. 128 tokens). We start by

hashing the first token block, then for the second token block, we hash that token

block together with the hash of the first token block. Thus the hash for the second

token block is actually the hash of the first two token blocks. Similarly, we hash the

third token block together with the hash for the second token block (which is

actually the hash of the first two token blocks), and so on, such that the hash for a

token block in the cache is actually a hash of all the token blocks up to and

including that token block. When finding a matching KVC it is thus enough to find

the matching hash that is furthest to the end of the hash list. The lookup input is an

ordered list of hashes representing the input prompt.

Given that these blocks can be large (several MB or GB even for modestly sized

LLMs) we further split up each block into chunk s of fixed byte size (e.g. 6k bytes).

Mapping from a chunk to a target server and how to look up a chunk can be done

differently depending on the use case, discussed below. However it is worth noting

that a failed lookup of a single chunk is enough to determine that the KVC does not

exist for the queried block.

 A baseline implementation of the protocol just computes the server (virtual chunk

destination that will be mapped to a physical destination such as a satellite) to

store on as chunk_id mod n where n is the max index of the server to host the chunk.

Note that this allows for parallelism both in setting and getting a single KVC.

Each KVC cache entry is hence identified by the tuple (block_hash, chunk_id).

The basic protocol was inspired by [9].

LEO Constellation Model

 A LEO constellation comprises a set of satellites orbiting earth in near circular

paths. A constellation is identified by an altitude and an inclination angle shared

across all its orbital paths. Each orbital path hosts the same number of equidistant

satellites in a grid formation. There is wraparound both within a plane (first and last

satellite can communicate) and across planes (first and last planes can

communicate) to form a 2D-Torus Mesh often referred to as +GRID. Even though ISL

communication is performed via free space optics, geography matters and the

closer the satellite is that hosts the cache to the one requesting it the better and

more reliable the latency will be.

In general, we cannot even assume that the whole cache of chunks for a block

resides within a single satellite. Distributing the cache saves memory but also

improves parallelism in setting and getting values. A cache miss is not catastrophic

as a KV cache can always be recomputed. So, while redundancy is not required for

reliability, it can improve latency. The more blocks you can cache, the higher

likelihood of cache hits, and therefore the lower the inference time.

The networking model of a 2D-Torus mesh with 4 ISL links from each satellite is

called +GRID and illustrated in Figure 2 below (from [7])

Figure 2. The +GRID networking model, so named because the 4 ISL links from

each satellite look like a plus sign. Note that the topology is a torus, so the

topmost and bottom-most rows wrap around, as do the leftmost and rightmost

columns.

Although the ideal architecture would be to connect and communicate directly with

all line-of-sight satellites from the ground directly, the protocol is structured such

that all the cache endpoints are within the fewest possible routing hops from the

closest satellite, which could be used if the line of sight (LOS) is obstructed.

Interface

The abstract interface provides two operations to obtain a KVC for a prompt (or

empty KVC if none was found) and to add blocks in the cache based on a prompt.

Both operations operate on a given model and tokenizer. If any parameter changes

in the model, the cache is no longer valid. Similarly, a different tokenizer would also

invalidate the cache.

class KVCManager:

init(model:LLMModel, tokenizer:LLMTokenizer)

add_blocks(prompt:String)

get_cache(prompt:String) ->KVC

The KVC returned can be passed into model.generate calls to speed up

generations, often referred to as past key values. The KVC can be implemented to

be memory efficient by trading off accuracy using various quantization techniques.

Chunk to Server Mapping

Servers are virtual satellite destinations, and the number of servers determine how

the chunks are spread out in a deployment. The initial chunk is always stored in the

current closest LOS satellite. The server ids are then distributed around this point in

concentric circles to lay out the chunks.

Migration

Once a new set of satellites are in LOS the chunks need to be migrated for efficient

retrieval. This can be done in parallel in each orbital plane.

Rotation Aware Caching

Servers are mapped to satellites left to right, top to bottom within a LOS grid. See

Figure 3.

Figure 3. Orange area is LOS. Green circle is the satellite closest to the LLM.

This works best in the use case of a ground hosted LLM that has LOS to a large

number of satellites reliably (e.g. 10-20). Migration is done from the column furthest

to the right to the column furthest to the left. See Figure 4.

Figure 4. Illustrating migration from the rightmost of the colored columns to the

leftmost colored column.

Hop Aware Caching Servers are mapped to satellites in concentric circles starting

from a given satellite, as shown in Figure 5. This works best when no migration is

necessary and the LLM is hosted on-board a fixed satellite.

Figure 5. Labeling of concentric circles of servers around the satellite in the

center.

Note that the concentric circles and hops may be logical so that faster horizontal

within-plane hops can result in wider horizontal areas.

Rotation and Hop Aware Caching

Servers are mapped to satellites in concentric circles starting from a given satellite

and within a LOS grid. This works best in the ground to satellite scenario like the

rotation case below but where the satellites cannot be reached reliably wihin a

single hop from the ground.

(a)

(b)

Figure 6. Illustrating rotation- and hop-aware caching. (a) Initially, the green

satellite (satellite 4 in orbital plane 3) is directly overhead. (b) Given the

direction of satellite movement, the column of satellites to its left (i.e., satellite

3 in the orbital plane 3) will be directly overhead in a few minutes. Thus to

prevent chunks 6, 3, and 8 from going out of LOS, these chunks are migrated to

satellite 2 in orbital planes 2, 3, and 4.

In Figure 6, the orange shaded area represents line of sight (LOS) and the green

circle is the satellite that is closest to the stationary LLM on earth. Chunks are

stored based on concentric “circles” based on hops with numbering starting in the

center, then proceeding clockwise with north first. As the satellites furthest to the

east move out of sight their chunks are migrated to the satellites about to enter LOS

on the west. In this case Satellite (sat 5,orb 2) migrates chunk 6 to (2,2), 3:(5,3)-

>(2,3) and 8:(5,4)->(2,4). Note that all these migrations can be done in parallel and

there is no harm in the chunk being stored in two satellites for some period of time.

Lastly, we note that if we predict a cache hit on a certain set of chunks at some

future time (for example, because of a predictive algorithm), then we can exploit the

fact that the set of satellites in the LOS at that future time is known exactly and

arrange to make those chunks available on those LOS satellites at that time.

Protocol:

Set KVC:

1. The prompt is tokenized and split into equal-sized token blocks

2. Each block is ordered and hashed based on the previous block hash and the

token list in the current block . The initial block has a null hash 0 as the

previous block hash.

3. A lookup is done for each block (See Get KVC protocol below) starting at the

last block and stopping when a match is found (alternatively we can use a

local radix tree, see below)

4. If no match is found for a block the KVC for that block is split into fixed byte

chunks

5. Each chunk is mapped into a separate LOS satellite using chunk_id mod

num_los_sats, the one with the fewest hops store chunk_id 1

6. The mapping from server to chunk it is done with the current closest satellite

as chunk 1. Then follows a pattern left to right top to bottom in concentric

circles. When a satellite is about to exit the LOS region all chunks stored

need to be migrated to the satellite about to enter LOS in the same plane.

Figure 7. How chunks are created from blocks, mapped to logical server and

then satellites, and how the new satellite hosts for a chubnk can be computed

after a rotation.

Get KVC:

1. See Step 1 in Set KVC

2. See Step 2 in Set KVC

3. The block list of hashes is searched with a binary search for a hash with

chunk 1 within the satellite in LOS with fewest hops (or radix tree)

4. If a match is found the higher ordered half is searched

5. If a match is not found the lower ordered half is searched

6. If the higher ordered half is a single hash and it is not found the search stops

with the result that the hash/block was not found and an empty KVC is used

in the generation

7. The latest (highest ordered block) match is retrieved and all the chunks for

that block are retrieved to reconstruct the KVC to be used in the generation

8. The lookups always start at the nearest satellite. It will return its chunk id and

based on that the shift left to right in chunk to server mapping is found and

the server for all other chunks can be computer and all chunks can be

queried in parallel.

Figure 8. How a block can be recreated for chunks after one rotation. Note that

rotations are predicable based on knowing the time of block creation.

Chunk Eviction

When there is memory pressure, the LRU chunk will be evicted to make place for

new block chunks. As soon as one chunk is gone, the block it belongs to cannot be

retrieved and must be purged. Hence an eviction needs to be propagated to all the

satellites holding the same chunks or at least the orbital plane that is used for

lookups. If a block only has one chunk, this is not an issue, and it could be a reason

to keep the chunk size large as a tradeoff for parallelism in retrieval and storage.

The advantage of the concentric circle of storage of chunks is that all the chunks

impacted by eviction are in the direct neighborhood of the chunk initially being

evicted, hence a simple gossip broadcast in all directions is sufficient. Alternatively,

lazy eviction can be implemented, where the lookup client will issue evictions when

chunks in a block are discovered to be missing.

Yet another policy is to do cleanup of chunks that are not complete periodically.

When chunks migrate, they can be evicted so there is a natural eviction as part of

the rotation synchronization as well.

Local Radix Block Index In the case of transformer KVC caching the ordered blocks

resulting from the prompt need to be queried using a longest prefix lookup. The last

block in the block list matching will have the cache we are interested in. The lookup

may be done sequentially or with some binary search, but as an optimization we

propose storing the block keys (not the values) in a Radix Tree (a.k.a radix trie or

prefix tree) locally were the LLM resides (on the ground or on-board the satellite).

An efficient lookup can thus be made in this local data structure to find out whether

the block exist. The database entry for the block can also store meta data such as

total number of chunks and the time of setting the value which would allow the

caller to compute where each chunk is currently located without having to query

any external satellites.

Eviction can either be done when a local lookup succeeds but the values are not

present in the constellation or by propagating eviction broadcasts back to the LLM.

The figure below shows the full end-to-end process:

Figure 9. End-To-End process from a prompt to a chunk lookup using a radix

tree.

We note that the radix tree lookup is an optional optimization, and it is the only part

that is specific to the Transformer (LLM KVC) application. All the other parts of the

protocol can be used as a general-purpose in-memory, Key Value Store (KVS) or

distributed HashTable for any data where the key can be converted to a string and

the value is an arbitrary, potentially large, byte sequence.

Summary

As AI models get increasingly deployed on the edge, there is a greater need for low-

latency access to, and distribution of AI model states on, edge devices. The industry

at large is trending toward a memory-first architecture to realize the lowest possible

latency for such access. This in turn means that there is a greater need than ever for

shared memory platforms. As we send an ever-increasing number of high-capacity

satellites into orbit with free space optics links to support communication and earth

observation use cases, LEO satellite constellations become an untapped resource

for distributed memory. The present invention proposes SkyMemory a solution for

Transformer Key Value caching to optimize LLM inference to deliver on that vision.

As network operators (both our members and other telcos) begin to deploy so-

called “AI factories” or AI distribution points in their plant to host or provide AI

services at the enterprise edge, this invention will allow for faster inference and

serving more queries and customers in a more efficient manner.

NVIDIA Jetson Nano GPU Prototype

We hosted a 1B parameter LLM (TinyLlama/TinyLlama-1.1B-Chat-v1.0) on an

NVIDIA Jetson Nano 8GB GPU and fed it a ~250-character prompt as context. It

resulted in 4x 128 token blocks of about 2.9MB each (with optimum-quanto 8bit

quantization). The blocks were split into 6k chunks before storage and retrieval. We

used 10 LOS cFS [8] satellites to stripe the chunks across. This resulted in a 30

token generation speedup from 6.2s to 4.9s or 21% when running the generation

without and with the cache respectively. For a HQQ quantizer the speedup was

about 24%.

Quantization No KVC (seconds) KVC (seconds)

Optimum Quanto 6.2 4.9

HQQ 10.2 7.8

S
k

y
M

e
m

o
ry

D
is

tr
ib

u
te

d
 M

e
m

o
ry

 H
o

s
te

d
 i

n
 L

E
O

 C
o

n
s

te
ll

a
ti

o
n

s

W
h

y
?

M
E

M
O

R
Y

 E
X

P
A

N
S

IO
N

 I
N

T
O

E
X

T
E

R
N

A
L

 S
A

T
E

L
L

IT
E

S

IN
C

R
E

A
S

E
D

 C
A

C
H

E
 H

IT
S

IM

P
R

O
V

E
D

 S
P

E
E

D
 O

F

IN
F

E
R

E
N

C
E

V
a

lu
e

 t
o

 m
e

m
b

e
rs

•
M

e
m

b
e

rs
 a

re
 u

p
g

ra
d

in
g

 t
h

e
ir

 g
a

te
w

a
y

s
 t

o
 s

u
p

p
o

rt
 A

I
o

p
ti

m
iz

a
ti

o
n

s

a
n

d
 t

o
 h

o
s

t
3

rd
p

a
rt

y
 A

I
a

p
p

li
c

a
ti

o
n

s
 (

A
I

F
a

c
to

ri
e

s
)

•
C

a
c

h
in

g
 i

s
 c

ri
ti

c
a

l
fo

r
th

e
 p

e
rf

o
rm

a
n

c
e

 o
f

in
fe

re
n

c
e

 a
t

s
c

a
le

(N
V

ID
IA

 D
y

n
a

m
o

 c
la

im
s

 3
0

x
 s

p
e

e
d

u
p

 f
o

r
s

o
m

e
 w

o
rk

lo
a

d
s

)

•
M

e
m

b
e

rs
 a

re
 a

lr
e

a
d

y
 f

o
rm

in
g

 p
a

rt
n

e
rs

h
ip

s
 w

it
h

 S
a

te
ll

it
e

 o
p

e
ra

to
rs

(R
o

g
e

rs
,G

C
I)

•
A

I
F

a
c

to
ry

 v
a

lu
e

-p
ro

p
o

s
it

io
n

 c
o

m
p

a
re

d
 t

o
 C

lo
u

d
 A

I
is

 l
o

w
 l

a
te

n
c

y.

C
a

c
h

in
g

 i
s

 c
ri

ti
c

a
l

to
 d

e
li

v
e

ri
n

g
 l

o
w

 l
a

te
n

c
y

 a
t

s
c

a
le

O
b

je
c

ti
ve

s

•
M

in
im

iz
e

 l
a

te
n

c
y

 (
h

o
p

s
)

to
 s

e
t

it
e

m
s

•
M

in
im

iz
e

 l
a

te
n

c
y

 t
o

 g
e

t
it

e
m

s

•
A

c
c

o
u

n
t

fo
r

o
rb

it
a

l
ro

ta
ti

o
n

•
A

c
c

o
u

n
t

fo
r

L
O

S

•
A

ll
o

w
 i

te
m

 l
o

c
a

li
z

a
ti

o
n

 g
iv

e
n

 o
rb

it
a

l
s

h
if

t
(d

e
te

rm
in

is
ti

c
 p

la
c

e
m

e
n

t)

•
U

s
e

 s
m

a
ll

 p
a

c
k

e
ts

 f
o

r
le

s
s

 m
e

m
o

ry
 f

o
o

tp
ri

n
t

a
n

d
 i

n
c

re
a

s
e

d

p
a

ra
ll

e
li

z
a

ti
o

n

•
M

in
im

iz
e

 m
e

s
s

a
g

e
 c

o
m

m
u

n
ic

a
ti

o
n

 v
o

lu
m

e

•
E

ff
ic

ie
n

t
c

o
n

ti
n

u
o

u
s

 s
ta

te
 m

ig
ra

ti
o

n
 (

to
 m

a
in

ta
in

 l
o

p
-h

o
p

 b
e

h
a

v
io

r
d

e
s

p
it

e
 r

o
ta

ti
o

n
)

D
is

tr
ib

u
te

d
 L

L
M

 In
fe

re
n

c
e

 O
p

ti
m

iz
a

ti
o

n

•
P

re
-f

il
l

c
a

c
h

in
g

 k
e

y
 t

o
 t

ra
d

e
 o

ff
 c

o
m

p
u

ta
ti

o
n

 w
it

h
 m

e
m

o
ry

 s
to

ra
g

e

•
P

re
-c

o
m

p
u

te
d

 v
e

c
to

rs
 s

to
re

d
 i

n
 K

e
y

 V
a

lu
e

 C
a

c
h

e
 (

K
V

C
)

•
K

V
C

 m
a

y
 b

e
 s

to
re

d
 i

n
 a

 m
e

m
o

ry
 l

a
y

e
r

o
f

G
P

U
,

C
P

U
,

R
D

M
A

,
S

S
D

e
tc

m
e

m
o

ry

•
P

ro
p

o
s

a
l:

 A
d

d
 L

E
O

 e
d

g
e

 a
s

 a
 m

e
m

o
ry

 l
a

y
e

r

W
h

y
 L

E
O

?

•
L

o
w

 l
a

te
n

c
y

 a
c

c
e

s
s

 f
ro

m
 a

n
y

w
h

e
re

 o
n

 e
a

rt
h

•
L

a
rg

e
 n

e
tw

o
rk

 o
f

h
ig

h
-c

a
p

a
c

it
y

 r
e

fr
ig

e
ra

to
r/

c
a

r
s

iz
e

d

c
o

m
p

u
te

/m
e

m
o

ry
 d

e
v

ic
e

s
 (

c
a

p
a

b
le

 o
f

s
u

p
p

o
rt

in
g

 M
o

b
il

e
 C

e
ll

To
w

e
r

in
 S

p
a

c
e

)

•
F

re
e

 S
p

a
c

e
 O

p
ti

c
s

 I
n

te
r

S
a

te
ll

it
e

 L
in

k
s

 f
o

r
e

ff
ic

ie
n

t
s

p
e

e
d

-o
f-

li
g

h
t

s
y

n
c

h
ro

n
iz

a
ti

o
n

•
H

ig
h

 R
a

d
ix

 R
o

u
ti

n
g

F
e

a
s

ib
il

it
y

L
a

te
n

c
y

1
0

-1
5

 n
a

n
o

s
e

c
o

n
d

s
C

P
U

5
0

-1
0

0
 n

a
n

o
s

e
c

o
n

d
s

G
P

U

2
-5

 m
ic

ro
s

e
c

o
n

d
s

R
D

M
A

2
0

-2
0

0
 m

ic
ro

s
e

c
o

n
d

s
S

S
D

2
-2

0
 m

il
li

s
e

c
o

n
d

s
H

D
D

3
0

-4
0

 m
il

li
s

e
c

o
n

d
s

N
A

S

2
0

-5
0

 m
il

li
s

e
c

o
n

d
s

L
E

O
 (

c
u

rr
e

n
t)

2
-4

 m
il

li
s

e
c

o
n

d
s

L
E

O
 (

th
e

o
re

ti
c

a
l

w
it

h
 l

a
s

e
r)

IS
L

 S
ta

rl
in

k
 C

o
n

s
te

ll
a

ti
o

n
 L

a
te

n
c

y
 E

x
a

m
p

le

S
ta

rl
in

k
 h

:
5

5
0

,0
0

0
m

 -
M

 (
s

a
t/

o
rb

):
 2

2
 -

N
 (

o
rb

s
):

 7
2

 -
r E

:
6

3
7

1
,0

0
0

m

C
o

n
s

te
ll

a
ti

o
n

:
1

,5
8

4
 s

a
te

ll
it

e
s

•
In

tr
a

-O
rb

D
M

=
1

,9
6

9
,9

2
2

m

L
s

a
t

=
 1

,9
6

9
,9

2
2

/2
9

9
,7

9
2

,4
5

8
 =

 6
.6

 m
il

li
s

e
c

o
n

d
s

•
In

te
r-

O
rb

D
N

=
 6

0
3

,7
8

0
m

L
o

rb
=

 6
0

3
,7

8
0

/2
9

9
,7

9
2

,4
5

8
 =

 2
 m

il
li

s
e

c
o

n
d

s

W
h

a
t

is
 a

 K
V

C
?

•
C

a
c

h
e

 t
o

 a
v

o
id

 r
e

-c
o

m
p

u
ti

n
g

 L
L

M
 o

u
tp

u
t

v
e

c
to

rs
 f

o
r

p
re

v
io

u
s

ly

s
e

e
n

 i
n

p
u

t
v

e
c

to
rs

•
V

a
lu

a
b

le
 f

o
r

la
rg

e
 f

re
q

u
e

n
tl

y
 u

s
e

d
 c

o
n

te
x

ts
 i

n
 p

ro
m

p
ts

•
P

ro
m

p
t

->
 T

o
k

e
n

 S
e

q
u

e
n

c
e

 -
>

 O
rd

e
re

d
 T

o
k

e
n

 B
lo

c
k

s

•
K

e
y

 F
e

a
tu

re
:

B
lo

c
k

 i
s

 m
a

p
p

e
d

 t
o

 K
V

C

•
K

V
C

 -
>

 S
e

ri
a

li
ze

d
 B

y
te

 C
h

u
n

k
s

•
C

h
u

n
k

in
g

 a
ll

o
w

s
 p

a
ra

ll
e

li
s

m
 a

n
d

 e
ff

ic
ie

n
t

s
to

ra
g

e
/r

e
tr

ie
v

a
l

H
o

w
 c

a
n

 w
e

 e
ff

ic
ie

n
tl

y
 h

o
s

t
a

 K
V

C
 in

 a
 L

E
O

C
o

n
s

te
ll

a
ti

o
n

?

•
F

o
r

g
ro

u
n

d
 L

L
M

s

•
F

o
r

o
n

-b
o

a
rd

 L
L

M
s

•
E

ff
ic

ie
n

t
P

a
ra

ll
e

li
s

m

•
E

ff
ic

ie
n

t
S

to
ra

g
e

•
B

o
th

 S
e

t
a

n
d

 G
e

t
H

e
a

v
y

 W
o

rk
lo

a
d

s

•
N

o
 r

e
p

li
c

a
ti

o
n

/r
e

li
a

b
il

it
y

 n
e

e
d

e
d

•
N

e
e

d
s

 t
o

 b
e

 H
o

p
 a

n
d

/o
r

R
o

ta
ti

o
n

 A
w

a
re

B
lo

c
k

 L
o

o
k

u
p

•
A

n
 O

rd
e

re
d

 B
lo

c
k

 L
is

t
w

it
h

 H
a

s
h

e
s

 r
e

p
re

s
e

n
ti

n
g

 t
o

k
e

n
s

 i
s

 i
n

p
u

t
to

th
e

 l
o

o
k

u
p

•
T

h
e

 h
a

s
h

e
s

 c
a

n
 b

e
 c

o
n

v
e

rt
e

d
 i

n
to

 a
 k

e
y

 i
n

 a
 r

a
d

ix
 t

re
e

•
A

 q
u

e
ry

 i
n

to
 t

h
e

 r
a

d
ix

 t
re

e
 f

in
d

s
 t

h
e

 l
o

n
g

e
s

t
p

re
fi

x
 m

a
tc

h

•
T

h
e

 r
a

d
ix

 t
re

e
 c

a
n

 s
to

re
 m

e
ta

 d
a

ta
 o

f
th

e
 h

a
s

h
e

s
 l

ik
e

 t
h

e
 n

u
m

b
e

r

o
f

c
h

u
n

k
s

 a
n

d
 t

h
e

 s
h

if
t

(t
im

e
 o

f
fi

rs
t

s
to

ra
g

e
)

•
If

 a
 m

a
tc

h
in

g
 b

lo
c

k
 i

s
 f

o
u

n
d

 t
h

e
 l

o
c

a
ti

o
n

s
 o

f
th

e
 c

h
u

n
k

s
 w

il
l

b
e

c
o

m
p

u
te

d
,

b
a

s
e

d
 o

n
 t

h
e

 t
o

ta
l

n
u

m
b

e
r

o
f

c
h

u
n

k
s

 a
n

d
 t

im
e

 s
h

if
t,

fr
o

m
 t

h
e

 e
x

te
rn

a
l

L
E

O
 s

a
te

ll
it

e
s

 d
e

s
c

ri
b

e
d

 n
e

x
t

P
ro

m
p

t

B
lo

c
k

 1

B
lo

c
k

 2

B
lo

c
k

 n

R
a

d
ix

T
re

e

D
B

M
e

ta
D

a
ta

C
h

u
n

k
 1

C
h

u
n

k
 2

C
h

u
n

k
 n

To
k

e
n

iz
e

S
p

li
t

C
h

u
n

k

L
o

o
k

u
p

P
re

fi
x

S
e

a
rc

h
H

a
s

h

R
o

ta
ti

o
n

 A
w

a
re

F
o

r
2

D
-T

o
ru

s
 c

o
m

m
u

n
ic

a
ti

o
n

 f
ro

m
 G

ro
u

n
d

 -
>

 S
a

te
ll

it
e

 w
h

e
n

 o
n

ly
 a

s
in

g
le

 s
a

te
ll

it
e

 i
s

 i
n

 L
O

S

1 2 3 4

52

6

8

4

3
1

9
7

5

S
A

T
 M

o
v

e
m

e
n

t

1
2

3
4

5
6

7

O
rb

it
a

l

P
la

n
e

S
a

te
ll

it
e

1
2

3
4

5
6

7

52

6

8

4

3
1

9
7

S
A

T
 M

o
v

e
m

e
n

t

O
rb

it
a

l

P
la

n
e

S
a

te
ll

it
e

1 2 3 4 5

H
o

p
 A

w
a

re
F

o
r

2
D

-T
o

ru
s

 c
o

m
m

u
n

ic
a

ti
o

n
 f

ro
m

 S
a

te
ll

it
e

 -
>

 S
a

te
ll

it
e

1 2 3 4

12

3

4

5

7 1
0

5

S
A

T
 M

o
v

e
m

e
n

t

1
2

3
4

5
6

7

O
rb

it
a

l

P
la

n
e

S
a

te
ll

it
e

6

9

1
1

8 1
2

1
3

R
o

ta
ti

o
n

 a
n

d
 H

o
p

 A
w

a
re

F
o

r
D

ir
e

c
t

L
O

S
 c

o
m

m
u

n
ic

a
ti

o
n

 f
ro

m
 G

ro
u

n
d

 -
>

 S
a

te
ll

it
e

1 2 3 4

12

3

4

5

6
7

8
9

5

S
A

T
 M

o
v

e
m

e
n

t

1
2

3
4

5
6

7

O
rb

it
a

l

P
la

n
e

S
a

te
ll

it
e

1
2

3
4

5
6

7

12

3

4

5

6
7

8
9

S
A

T
 M

o
v

e
m

e
n

t

O
rb

it
a

l

P
la

n
e

S
a

te
ll

it
e

1 2 3 4 5

S
e

tt
in

g
 B

lo
c

k
 +

 1
 R

o
ta

ti
o

n
 M

ig
ra

ti
o

n

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1 2 3 4 5 6 7 8 9

(x
,y

-1
)

(x
,y

)

(x
+

1
,y

)

(x
,y

+
1

)

(x
-1

,y
)

1

h
o

p

(x
-1

,y
-1

)

(x
+

1
,y

-1
)

(x
+

1
,y

+
1

)

(x
-1

,y
+

1
)

2

h
o

p
s

(x
+

1
,y

-1
)

(x
+

1
,y

)

(x
+

1
,y

+
1

)

(x
-2

,y
-1

)

(x
-2

,y
)

(x
-2

,y
+

1
)

b
lo

c
k

c
h

u
n

k
s

s
e

rv
e

rs
ro

ta
ti

o
n

s
a

te
ll

it
e

s
m

ig
ra

ti
o

n

G
e

tt
in

g
 B

lo
c

k
 A

ft
e

r
1

 R
o

ta
ti

o
n

(x
’,y

)
=

 (
x

-1
,y

)

(x
’,y

-1
)

(x
’,y

)

(x
’+

1
,y

)

(x
’,y

+
1

)

(x
’-

1
,y

)

(x
’-

1
,y

-1
)

(x
’+

1
,y

-1
)

(x
’+

1
,y

+
1

)

(x
’-

1
,y

+
1

)

L
O

S

s
a

te
ll

it
e

1 2 3 4

5

6 7 8 9 1
0

1
1

1
2

s
h

if
t

1

2 3 4 5 6 7 8 9

c
o

m
p

u
te

 s
e

rv
e

r
m

a
p

p
in

g
b

lo
c

k

E
x

a
m

p
le

 U
s

e
 w

it
h

 H
u

g
g

in
g

fa
c

e
T

ra
n

s
fo

rm
e

rs

k
v
c
=

K
V
C
B
l
o
c
k
(
)

i
n
p
u
t
s

=

t
o
k
e
n
i
z
e
r
(
p
r
o
m
p
t

,

r
e
t
u
r
n
_
t
e
n
s
o
r
s
=
"
p
t
”
)

o
u
t

=

m
o
d
e
l
.
g
e
n
e
r
a
t
e
(
*
*
i
n
p
u
t
s
,

p
a
s
t
_
k
e
y
_
v
a
l
u
e
s
=
k
v
c
.
g
e
t
_
c
a
c
h
e
(
p
r
o
m
p
t
)
)

k
v
c
.
a
d
d
_
b
l
o
c
k
s
(
p
r
o
m
p
t
)

	First_Pages_62248PROV
	LeoKVCV1

