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BACKGROUND 

Advances in both communication technology such as phased-array antennas and the 

economics of satellite launches have made Low-Earth Orbit (LEO) satellite services like 

Starlink, Kuiper, and OneWeb a promising approach to providing connectivity in remote or 

sparsely populated areas. It is also expected that the next evolution in LEO communication will 

move parts of the core network on board the satellites and leverage speed-of-light free-space 

optical links between satellites to reduce both end-to-end latency and the number of ground base 

stations.  

One problem is that satellite network operators (SNOs) have neither infrastructure nor 

spectrum licenses in common with mobile network operators (MNOs), all of whose 

infrastructure and licenses so far have been terrestrial. Thus, the success of satellite-based 

connectivity depends on MNOs negotiating suitable licensing agreements with SNOs. The 

history of similar licensing agreements between MNOs, or between MNOs and multiple system 

operators (MSOs), shows that such agreements are laboriously negotiated, bilateral in nature, and 

inflexible in their offerings. 

Fig 1: MNO / SNO Low Earth Orbit (LEO) Market 
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Fig 2: LEO Deployment trend from [5] 

Known Prior Art 

Blockchain and distributed ledger technology is mature and readily available as open 

source, e.g., Hyperledger Fabric (https://hyperledger-fabric.readthedocs.io/en/latest/). The state-

of-the-art transaction processing algorithms used for contractual integrity (gossip, leader 

election, consensus) were designed for enterprise datacenters and are not appropriate for highly 

dynamic orbital deployments [8]. 

A similar SNO/MNO market was proposed in “Democratizing {Direct-to-Cell} Low 

Earth Orbit Satellite Networks” by Lixin Liu et al. [2], but it does not provide any smart 

contracts or any means to host core data services such as a ledger on-board (satellites), which is 

key to the present disclosure. 

SUMMARY 

The present disclosure describes a “Cloud-in-the-Sky,” or geo-aware satellite on-board 

data infrastructure services. It is one aspect of the invention to provide a blockchain-based 

distributed ledger infrastructure to leverage the unique properties of Low-Earth Orbit (LEO) 

constellations and offer on-board (i.e., on the satellite) transaction processing for smart contracts. 
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Embodiments of the present disclosure can be used in mobile network operator (“MNO”) LEO 

service provisioning. 

One advantage of embodiments of the present disclosure is the ability to execute 

transactions on-board satellites to avoid the extra round-trip latency to earth-based services. This 

disclosure also takes advantage of the orbital movements to minimize communication and 

computational cost, as well as to make consensus and synchronization for transactional integrity 

efficient. 

One particular use case described herein, although others are contemplated, is contracts 

between MNOs and satellite network operators (SNOs) to share the cost (and revenue) of 

offering high-speed direct-to-cell satellite connectivity. Note that although one focus is on a 

smart contract between a terrestrial MNO and the satellite network operator, the infrastructure 

described in the present disclosure is applicable to any smart contract that may need to be run, 

maintained, or executed on board the satellites operated by the SNO. 

Given the rapid orbital movement of LEO satellites, a single connected user device is 

only served by the same satellite for about 5 minutes. This means that establishing and handing 

off a connection (to an overhead satellite so that the user device can maintain internet access 

through the MNO’s network) needs to incur a low time overhead. Hence the proposal to run the 

smart contract service on board the satellites themselves.  

While this proposal should reduce the time to establish a connection, it also comes with 

several infrastructure challenges, such as energy consumption, computation efficiency and 

transactional integrity. Existing underlying algorithms like leader election and consensus 

establishment were designed for data center deployment, not for a dynamic network such as an 

orbital constellation where the topology is in constant motion. At the same time there is an 

efficiency issue of orbital provisioning, where many satellites are under-utilized over low-

population areas, such as oceans. 

The basic idea, according to one embodiment of the present disclosure, is to designate 

some low-traffic geographic grid patches such as areas over oceans and low-population lands as 

service areas (SA). Satellites will only run the provided data infrastructure services as they pass 

over the SAs. This means that the cluster of nodes (e.g., satellites) running the service is in 

constant change and nodes entering the area will need to sync their data before they take part in 

the protocols. 
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A LEO deployment is organized by “satellites” moving in a circular orbit around the 

earth at a certain altitude and inclination angle (angle at which the satellite path crosses the 

equator). An “orbital plane” comprises a set of satellites on the same path. A “shell” is a set of 

orbital planes with the same altitude and inclination. Finally, a “constellation” is a set of shells. 

In this disclosure, these terms have their ordinary meaning in the art, as further defined and 

described herein. 

Each satellite can have four (4) Inter Satellite Links (ISL), connected through optical 

links at free space speed of light to satellites within the same orbit (e.g., EAST, WEST) and 

neighboring orbits (e.g., NORTH, SOUTH). The network is furthermore bent around the edges 

in both the NORTH-SOUTH (columns) and EAST-WEST (rows) directions in what is referred 

to as a +GRID layout or 2D torus (doughnut shape).

Each row and each column have the same number of satellites, while the number of rows 

and the number of columns may differ. Satellites in the same row (orbital plane) are spaced 

uniformly along the path (at equal distance from each other). The ISL communication within an 

orbital plane (EAST-WEST) is static in latency (and distance), but the latency varies between 

orbital planes (NORTH-WEST) over time, although predictably and periodically. And while 

there is no direct ISL communication available between shells in a constellation with this 

architecture. such routing may be possible through dedicated communication links or earth-based 

links. 

Fig 3: Satellite Shell 2D Torus
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Within a service area (e.g., patch in shell) we define a row dedicated as the leader row, 

meaning a protocol leader is elected from this row. 

Gossip Protocol and Routing 

The basic broadcast protocol follows a gossip mechanism where each receiving node in 

the service area forwards messages not previously seen in the three directions the message did 

not come from. If a message is received that has previously been seen no further propagation is 

done by that node. Gossip messages may be started outside the service area but until it reaches 

the service area, only a single direction towards the shortest path to the service area will be used 

Fig 4: Service Area patch (red)

Fig 5: Leader row (orange) and leader (blue)
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to route the message. There could be several service areas in the same shell but there is no direct 

communication between the service areas and a message may only be directed towards a single 

service area at a time. Service areas may be used for sharding to split keys using a (consistent) 

hashing protocol towards a dedicated service area. 

The gossip protocol does not rely on the torus wrap-around architecture for 

communication but will be more efficient with it. Similarly, the service area where 

communication will be spread does not have to follow a perfect square and non-contiguous 

regions may be more likely to form in case of failures when not. However, the leader row should 

be the orbital plane that covers the longest stretch over the area. (See next paragraph.) As long as 

a leader can be selected from the leader row and a majority of the service area nodes are 

operating, transactions should be possible to process.  

Leader Election 

To ensure transactional consistency a single node needs to be dedicated at any given time 

to serve as a leader within a service area hosting a ledger. Instead of fixing a single satellite 

directly to serve as leader, which is impossible since the nodes in the service area change over 

time, we will dedicate a row within the service area to serve as the leader row. Messages for the 

leader will be routed to the leader row and the leader row nodes will then be responsible for 

routing the message to the current leader. The leader should change as infrequently as possible 

and, hence, the leader election involves picking the node in the leader row that has the longest 

expected time left in the service area. Once that node leaves the service area it will re-assign 

leadership to the node that, at that point, has the longest expected time left in the service area 

(e.g., the node furthest east). Alternatively, the leader row may run a ringleader-election protocol 

with the priority being the expected time left in the service area. 

Nodes who need to transmit messages to a leader do not need to know who the leader is. 

They only need to know the leader row (x-coordinate) and they can then send their messages 

south or north until the messages reaches the leader row. The node receiving the message in the 

leader row will know who the leader is and send it west or east if needed. Only the nodes active 

in a service area need to know who the leader is, so a node in the leader row but not in the 

service area can just forward the message to the service area, again, either west or east. 
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In order for a new leader in the leader row to accept the role of the leader instantly, they 

need top sync on the current last sequence number for transactions that the current leader set. 

When electing a new leader, the previous leader communicated this last sequence number to 

ensure the new leader picks up where the old leader left off. Any leader messages coming in to 

the old leader after the handoff will be routed to the new leader. 

Node Migration 

Nodes leaving the service area will stop keeping their ledger up-to-date, and nodes 

entering the service area will sync blocks with their neighbor immediately to the WEST before 

taking part in the transaction processing described below. A node entering the service area will 

request the most recent state of the neighbor to the west as well as all blocks on the blockchain 

that the west neighbor may have that the node does not have in its ledger. Since all blocks are 

indexed it is just a matter of requesting blocks beyond the local max index. If the sync fails 

because the neighbor to the west is not available the node may request an indirect sync with the 

north or south neighbor, assuming they are in the service area, to have their west neighbor 

provide the latest state and missing blocks since the last orbital cycle.  

Service Area Example 

Let’s say users want to have a service area over the Atlantic. Given that the 

circumference of the Earth is 40,000 km, and the shortest distance over the Atlantic between 

Europe and the U.S. is 6,400 km, a typical time of LEO full-circle orbit is 90 min. Thus, the time 

a node spends in the service area would be roughly 6,400/40,000*90 = 14 minutes and 24 

seconds. With about 40 satellites per orbit in a row and 17 planes in the service area it can host 

680 ledger nodes, which is more than enough for a large-scale blockchain. This will ensure that 

migrations (in east-most column) or leader switches (in leader row) will not cause infeasible 

levels of overhead.  

Transaction Processing 

A transaction is a series of read and write operations on a ledger. It is performed in three 

major phases: (1) Transaction Execution, (2) Transaction Ordering, and (3) Transaction 

Verification and Commitment. 
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1) Transaction Execution

Any service area node with an up-to-date ledger may execute a transaction in this step. 

The transaction is executed against the local ledger as an initial verification of the validity of the 

transaction, but nothing is written to the ledger. All the read and write operations of the 

transactions are recorded with the keys read and written as well as their versions based on the 

local ledger. 

2) Transaction Ordering

If the transaction is executed successfully locally the read and write lists are sent to the 

leader through the nearest leader row (e.g., straight NORTH or SOUTH). The leader will collect 

and serialize transactions and bundle them in blocks. The blocks of ordered transactions with 

unique increasing sequence numbers are then broadcast to all nodes in the service area using the 

gossip protocol described above. 

3) Transaction Commitment and Verification

A node receiving a block will first inspect the sequence numbers to make sure all 

transactions are checked and verified in the order mandated by the leader, not the order of 

receiving the transaction. Once ordered by sequence numbers the service area node verifies the 

transactions are valid based on read and write traces and the current state for the given smart 

contract. The valid transactions will then be written to the local ledger and the state save to the 

local contract state. On successful commitment the node may notify the original transaction 

requester that a transaction completed successfully so that a consensus read/write can be 

performed, e.g., a write or read is only considered successful if at least a majority of all nodes in 

a service successfully wrote(read) a key. The block in the blockchain will also be verified to be 

consistent across writers for the transaction to be considered a success. Similarly, a failed 

transaction could also be reported to the original transaction requester. Note this mechanism is 

akin to the general virtual synchrony replication design. Transactions that fail to write to the 

ledger within a timeout may also be considered to have failed. All transactions are signed by the 

requester. Each block is hashed and the hash contains the hash of the previous block to ensure 

integrity of the ledger. This verification is done by each node in the service area before the block 

is written to the ledger.  
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Additionally periodic block syncing, e.g., triggered by the leader node, can be done in the 

service area where the latest block version numbers are gossiped to see if any node needs to pull 

new updates. This mechanism further limits the risk of failed transactions due to stale reads.  

The latest blocks for each key will be kept in memory for faster reads and writes. Given 

that the Service Area nodes are all connected with speed-of light interconnects, a crashed node 

can resync from a neighbor as opposed to reading from permanent storage. Hence the service 

area can be seen as a distributed memory cluster. 

The blocks contain the index, timestamp, transaction(s), and previous hash. The state 

contains the key value pairs the transactions operate on as well as the block index last written to 

the state. A transaction comprises a transaction id as well as a list of operations. An operation 

contains an operation type (read or write) as well as a version in case of read and a value in case 

of write. 

An example state is shown below: 

{ 

 "state": { 

 "account_x": { 

 "value": { 

 "balance": 20 

 }, 

 "version": 3 

 }, 

 "account_y": { 

 "value": { 

 "balance": 10 

 }, 

 "version": 3 

 } 

 }, 

 "block": 4 

}

An example block in the chain for the state is shown below: 

{ 

 "index": 4, 

 "timestamp": "2024-09-18 15:05:52.435718", 

 "content": { 

 "ops": [ 

{ 
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 "key": "account_x", 

 "op": "read", 

 "version": 2 

 }, 

 { 

 "key": "account_x", 

 "op": "write", 

 "value": { 

  "balance": 20 

 } 

 }, 

 { 

 "key": "account_y", 

 "op": "read", 

 "version": 2 

 }, 

 { 

 "key": "account_y", 

 "op": "write", 

 "value": { 

 "balance": 10 

  } 

  } 

 ], 

 "id": "4f0d0706-2390-4927-b91b-f3fc1fa10eda" 

 }, 

 "previous_hash": "6070d7de1439abc124550deaca136fb71d1cc3f8bcc3ede0403cf2cfa4d2d9b2" 

}

Smart Contract 

A smart contract is set of methods that are all reading and writing state atomically. Each 

method is defined as a transaction comprising a series of read and write operations. The 

following is a smart contract implemented as a Python class. 

class AccountContract(Contract): 

 def __init__(self): 

 pass 

 def create(self,balance=0): 

 self.transaction.write(str(uuid.uuid4()), {"balance": balance}) 

 def transfer(self,from_account=None, to_account=None, balance=0): 

 value, _ = self.transaction.read(from_account) 



12 

 value["balance"] = value["balance"] - balance 

 self.transaction.write(from_account, value) 

 value, _ = self.transaction.read(to_account) 

 value["balance"] = value["balance"] + balance 

 self.transaction.write(to_account, value) 

This contract is operating on local state and resulting transactions are sent to the leader 

node for ordering. The ordered transactions are then sent to all service area nodes for local 

verification and commitment to the local blockchain. 

Distributed Databases 

Any application running “in-the-sky” could use the proposed transaction processing 

mechanism herein to ensure eventually consistent and efficient processing of persistent state, 

with ultra-low-latency.  

Fig 6: Contract Transaction Execution, Local Invocation, Ordering (Submit), and Local 

Verification and Writing to Blockchain 



13 

Related Work and Citations 

[1] Pastukh, Alexander, Valery Tikhvinskiy, Svetlana Dymkova, and Oleg Varlamov. "Challenges

of Using the L-Band and S-Band for Direct-to-Cellular Satellite 5G-6G NTN Systems." 

Technologies 11, no. 4 (2023): 110. 

[2] Liu, Lixin, Yuanjie Li, Hewu Li, Jiabo Yang, Wei Liu, Jingyi Lan, Yufeng Wang et al.

"Democratizing {Direct-to-Cell} Low Earth Orbit Satellite Networks." In 21st USENIX 

Symposium on Networked Systems Design and Implementation (NSDI 24), pp. 791-808. 2024. 

[3] Guidotti, Alessandro, Alessandro Vanelli-Coralli, Màrius Caus, Joan Bas, Giulio Colavolpe,

Tommaso Foggi, Stefano Cioni, Andrea Modenini, and Daniele Tarchi. "Satellite-enabled LTE 

systems in LEO constellations." In 2017 IEEE International Conference on Communications 

Workshops (ICC Workshops), pp. 876-881. IEEE, 2017. 

[4] Sandholm, Thomas, and Sayandev Mukherjee. "Smart Contracts for Mobile Network

Operator Bandwidth Sharing." Distributed Ledger Technologies: Research and Practice 2, no. 4 

(2023): 1-8. 

[5] Vanelli-Coralli, et. al., “5G Non-Terrestrial Networks: Technology, Standards, and System

Design,” IEEE Press 2024. 

[6] https://www.fcc.gov/document/fcc-proposes-framework-facilitate-supplemental-coverage-

space-0. 

[7] Pfandzelter, Tobias, and David Bermbach. "Qos-aware resource placement for leo satellite

edge computing." In 2022 IEEE 6th International Conference on Fog and Edge Computing 

(ICFEC), pp. 66-72. IEEE, 2022. 

[8] https://hyperledger-fabric.readthedocs.io/en/release-2.2/txflow.html.



���������



A Cloud in the Sky: Geo-Aware On-board Data Services

for LEO Satellites

Thomas Sandholm, Sayandev Mukherjee, Bernardo A. Huberman

Next-Gen Systems, CableLabs, Santa Clara, CA

October 8, 2024

Abstract

We propose an architecture with accompanying protocol for on-board satellite data infras-

tructure designed for Low Earth Orbit (LEO) constellations offering communication services,

such as direct-to-cell connectivity. Our design leverages the unused or under-used computing

and communication resources of LEO satellites that are orbiting over uninhabited parts of the

earth, like the oceans. We show how blockchain-backed distributed transactions can be run

efficiently on this architecture to offer smart contract services.

A key aspect of the proposed architecture that sets it apart from other blockchain systems

is that migration of the ledger is not done solely to recover from failures. Rather, migration is

also performed periodically and continuously as the satellites circle around in their orbits and

enter and leave the blockchain service area.

We show in simulations how message and blockchain processing overhead can be con-

tained using different sizes of dynamic geo-aware service areas.

1 Introduction

With more connected devices and improved capabilities of connected devices, the need for high-

bandwidth connectivity anywhere and anytime keeps growing at an exponential rate. High-population

areas usually see investments in high-capacity communication infrastructure such as cell towers,

small-cell antennas, radio heads and base stations. For an end-user device wanting access to a

wireless mobile network, having low-latency access to this infrastructure not only allows the initial

connection to be established faster, but also encounters fewer restrictions on the effective through-

put, given timeouts of various acknowledgments in the protocols.

For remote or sparsely populated areas not served by the communication infrastructure de-

scribed above, satellite communication is an attractive, albeit expensive, solution. Recent improve-

ments in antenna technology as well as satellite launch economics have contributed to a 12-fold

increase in the number of Low-Earth-Orbit (LEO) satellite launches in the last decade [27]. Be-

cause LEO satellites orbit the earth at a lower (and fixed) altitude they are ideal for providing

communication services.
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Current Non-Terrestrial-Networks (NTN) follow a bent-pipe architecture whereby the satellites

serve as a simple relay between communicating parties on earth (the user device and a terrestrial

base station, say). As a result, two-way communication between a target device and a base sta-

tion providing network services result in messages traveling between the LEO satellite and earth

four times, severely impacting both the latency and bandwidth the networks can provide. To over-

come this overhead, recent efforts to move some core network services on-board the satellites have

gained in popularity. The resulting architecture is often referred to as a non-transparent or regen-

erative, indicating that the satellite takes an active part in the communication beyond just relaying

between parties on earth.

Apart from latency and bandwidth concerns, NTN networks also have to address the challenge

of spectrum access. As LEO satellites circle the earth they need to make sure their transmissions do

not interfere with (typically nationally licensed) terrestrial networks anywhere in their orbit, while

at the same time being easily accessible to standard communication devices, such as cell phones.

This has lead to a natural collaboration between Mobile Network Operators (MNOs) and Satellite

Network Operators (SNOs). While a LEO satellite can circle the earth in 90 minutes, its orbital

arc typically allows it to serve a given earth-located station for only about 5 minutes. Thus, any

connectivity between a user device and a terrestrial base station through an LEO satellite needs to

be established efficiently, depending on the current local constraints and spectrum availability.

We propose to host a bandwidth ledger that enables on-demand purchases of cellular bandwidth

akin to the way compute resources are purchased in the Cloud, and that allows revenue sharing

between the MNOs and SNOs. Given the latency concerns described above, we further propose

to host this ledger entirely on-board the LEO satellites, using their Inter-Satellite-Link (ISL) free-

space optical communication links.

In Section 2, we summarize the principal contributions of the present work. We then provide

an overview in Section 3 of related work, discussing the differences between our approach and

those of other researchers. In Sections 4 and 5 we provide a quick background overview of the

two main technologies that are part of our proposed solution, namely Blockchains and LEO satel-

lite constellations. The main section describing our proposed protocol is Section 6, followed by

Section 7 describing a simulator and visualization tool for on-board blockchain processing in LEO

constellations. We present the results of evaluation of the proposed protocol in Section 8 and our

conclusions in Section 9.

2 Contributions of the present work

Note that communication between satellites is literally happening at the speed of light, but com-

putational overhead can be an issue, in particularly with re-generative workloads or multi-tenant

radio heads serving many MNO spectrum bands (e.g. on-board gNodeBs). Moreover, adding ca-

pacity to these networks is costly, as the circular motion and equal spacing means that there are

the same number of satellites serving low-traffic areas such as big oceans and deserts, as the most

populous areas such as metropolitan cities.

Our solution addresses all these challenges by running a distributed ledger to execute smart

contracts using the unique structure of LEO ISL communication as well as the geographic proper-

ties of orbital cycles.

We propose two data infrastructure primitives: a gossip protocol, and a distributed transaction
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processing protocol, that are customized to be efficient in LEO communication ISL networks and

can be used to implement smart contracts as well as distributed databases for core communication

services to avoid a round-trip to ground stations. We introduce the notion of a Service Area (SA)

which denotes a geographical area where data services will be actively hosted. We further intro-

duce the novel concepts of leader row and neighbor migration to support moving the cluster of

active participating satellites in and out of the service area as they move around in their orbits.

3 Related Work

The many challenges of offering cellular connectivity from satellites, including doppler effects

and latency issues, are described in [8]. These and other challenges in using the traditional satellite

communication spectrum in the L-Band and S-Band for direct-to-cell connectivity [16] are the

reason for SNOs and MNOs to coordinate their usage and allocation of spectrum resources. FCC

has also recognized the value of re-using MNO spectrum for extended or supplemental coverage

through satellites1.

Previously, we have designed smart contracts for more efficient spectrum sharing among ter-

restrial MNOs [23, 21, 22, 20]. The present work extends this idea to LEO-based networks.

A similar approach of micro-contracts between MNOs and LEO SNOs is described in [12],

where the authors propose an architecture for giving MNO customers easy access to SNO-provided

multi-tenant direct-to-cell networks via standard SIM cards. Customers purchase tokens to use

satellite services from their MNO, which will be written into trusted hardware on their SIM cards.

When satellite access is needed, the SNO will be able to verify the validity of the token as well as

mark it as used before providing service.

We have previously envisioned a similar architecture for ad-hoc multi-provider bandwidth pur-

chases using eSIMs and an open distributed ledger market in [23] and [21] to overcome the ineffi-

ciencies of establishing new roaming contracts between providers. The advantage of our approach

compared to that of [12] is that contracts do not need to be negotiated ahead of time and there is no

need to keep tokens on SIM cards. However, our approach requires the presence of a distributed

ledger accessible to both the end-user device and the mobile operator, and thus the performance of

the system depends on the placement and migration of the distributed ledger.

QoS optimization is addressed via edge-service placement in LEO constellations in [17], where

the authors select an optimal subset of satellites to host a specific service like a CDN or IoT data

processor. In the scenario they address, the primary benefit is cost as only a subset of satellites

deemed optimal to host services will be equipped with the necessary hardware. In contrast, in the

present work we propose a software allocation solution that reduces the load on satellites to allow

lower capacity hardware to be provisioned on all satellites. Moreover, our software placement is

aware of the geographic position of the satellites in order to exploit idle resources on satellites not

actively engaged in communication services. Our focus is less on reducing hops and instead on

limiting broadcast overhead while still getting the benefit of replication. We note, however, that

we chose to adopt their +GRID 2d torus model of ISL communication for our work as well.

Geo-aware LEO ISL routing schemes are investigated in [18]. The key to their approach is to

embed geographical information in the MAC addresses of the communicating terminals to route

packets more effectively without having to change the allocated IP addresses. With this approach

1
https://www.fcc.gov/document/fcc-proposes-framework-facilitate-supplemental-coverage-space-0
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they can better handle handovers and reduce delays in the dynamic and constantly moving network

conditions of LEO satellites. Our focus is more on data infrastructure service provisioning and load

balancing while taking geo-position into account, as opposed to routing.

ISL routing is also considered in [26], where the main goal is to effectively find alternative paths

in case of failure while making sure that the link capacity in the network as a whole is optimized.

They argue that path restoration instead of link restoration is a more efficient way of recovering

from link failures. We only indirectly deal with failures in that we process transaction on a large

set of satellites concurrently and in virtual synchrony, so that reaching any of these satellites would

allow access to the up-to-date data with eventual consistency guarantees.

There have been many efforts to simulate satellite communication in software, e.g. [24] and

[5]. We opted to build our own simulator to focus on the parts that mattered to our study, namely

the LEO ISL links and the service migration and movement of satellites, as well as the ability to

run custom software on each satellite node. The way we implement orbital planes as processes

and satellite nodes as threads allows us to simulate large constellations effectively while easily fa-

cilitating and monitoring all communication between nodes. Furthermore, our simulator is written

entirely in Python3 with only a couple of external dependencies for inter-process communication

(HTTP REST). The visualization is written in standard JavaScript HTML5 running on a local Web

server, which makes it easy and quick to set up and run locally on any laptop, as well as to demo

remotely.

4 Blockchains and Distributed Ledgers

Blockchain technology was popularized with the virtual bitcoin currency [14] and provides a way

to maintain a distributed ledger consistently and scalably across a large number of nodes. The 2-

phase-commit transaction protocols used in traditional relational databases [2], for instance, scale

very poorly as the transaction as a whole fails if only one party maintaining state fails. Blockchains

originally provided a way to ensure consensus by what is referred to Proof of Work (PoW) where

only parties that solved complex math problems were allowed to write into the ledger. The way a

blockchain serializes blocks and maintains a hash of the previous block in the hash of the current

block, it is easy to validate the internal consistency of the chain. PoW blockchains may contain

competing forks of the blockchain but the longest chain wins if there is a conflict. These types of

blockchains are appropriate in environments where anyone is allowed to write into the ledger in a

large community of untrusted parties. The computation to solve math problems is however energy

hungry and since LEO satellites have a limited lifetime depending on how long their battery lasts,

this type of blockchain, referred to as permissionless, is not appropriate for our use case.

Instead we focus on permissioned blockchains that only allow authenticated and trusted partic-

ipants to write into the ledger. Hence the blockchain can never fork into competing branches and

no work is wasted. Some nodes may have fewer blocks but they will eventually catch up. Still the

protocol needs to deal with failures and needs to ensure a consistent ordering of transactions. This

is typically done by having a single node act as the leader to provide consistent ordering. Electing

a leader is a critical part of the protocol as having no or multiple leaders will cause the system to

fail as a whole. Leader election can be done by various consensus algorithms such as Paxos [11] or

Raft [15]. As we shall see later we can provide a more suited and simpler leader election algorithm

for the LEO case that is similar to the token ring leader election algorithm [25].
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Permissioned blockchains like Hyperledger Fabric2 go through the following high level steps

to process a transaction: (1) execute the transaction against local state to ensure validity and record

all versions read and what is written in each atomic unit (transaction), (2) send the read and write

operations to the current leader to order all transactions globally, (3) once a sequence number is

attached to each transaction or optionally they have been bundle in larger blocks broadcast them

back (via a gossip protocol) to all nodes maintaining the blockchain state, (4) nodes receiving

the transactions will validate and execute them in the order given to a local blockchain and state

repository. Validation ensures that the version read has not been updated by some other transaction

before writing to the same state.

As we shall see later we follow the same high-level steps which could be compared to the

virtual synchrony [3] state replication approach, but with customizations at each step.

This process allows writes and reads to be done with eventual consistency [28], or optimistic

locking as opposed to with strict atomicity, consistency, isolation and durability (ACID) guaran-

tees, known from protocols such as two-phase commit [2]. As previously mentioned, the issue

with the ACID protocols is that they scale poorly across large sets of replicas as failures become

more likely.

A blockchain could in theory be implemented on a single node to ensure consistency but that

would also reduce availability, so most deployments have the architecture of a distributed ledger

with eventual consistency guarantees. This is also the model we follow.

Eventual consistency (guarantees) can be defined as follows. Assuming there are n nodes in

the service area, if w nodes acknowledge they committed the transaction, and r nodes are used to

read the data, then consistency can be guaranteed iff w + r > n (see [28]). The tradoff follows

from relaxing the C in the CAP theorem [4].

5 LEO Constellations

Low-Earth-Orbit (LEO) satellites are typically orbiting at a fixed altitude above the earth in the

range of 311 to 621 miles [6]. In contrast to GEO satellites that follow the rotation of the earth to

appear at a fixed point from a given position on earth, the LEO satellites rotate faster than the earth

spins. The velocity and thus orbital period depends on the altitude of the satellite and mandates the

number of satellites needed for full coverage. As an example, a LEO satellite at 391 miles altitude

orbits the earth in about 97 minutes. A typical constellation at this altitude designed to provide full

coverage with 34 satellites in each orbital path [17] results in a new satellite appearing over a fixed

point on earth every 3 minutes.

Satellites on the same orbital path are referred to as an orbital plane. They are placed at equal

distance from each other with a wraparound, so the first satellites is at the same distance from the

second as from the last. These inter-satellite distances do not change over time. Orbital planes are

further organized into shells or constellations3 where each plane has the same altitude over earth

and inclination angle4. Communication across orbital planes are possible but the distance to the

2https://www.lfdecentralizedtrust.org/projects/fabric
3Sometimes constellations refer to a set of shells but we only assume intra-shell communication is available here

so use constellation and shell interchangeably.
4angle at which its path crosses the equator
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nearest neighbor in a different plane may differ over time, although it is predictable and cyclical.

Hence, within plane communication is more reliable.

Each satellite would typically have 4 inter-satellite links to neighboring satellites, e.g. west,

east, north and south, using free-space optical connections to transmit at the speed of light. The

network in a shell can thus be seen as a connected mesh forming a 2d-torus where there is a wrap-

around both in rows and columns (see Figure 1). This architecture is referred to as a +GRID

inter-satellite link (ISL) network [17], and it is the one we assume for our work.

Figure 1: +GRID 2d torus ISL. Source: Pfandzelter and Bermbach [17].

As described in Section 2, a service area (SA) is defined as an area where satellites are typically

less loaded with communication workloads, such as over the oceans. Any satellite passing over

this area will take an active part in hosting the data services.

For example, the Pacific Ocean stretches about 15, 500km from the Arctic to the Southern

Ocean and 19, 800km from Indonesia to the coast of Colombia, which is close to half the circum-

ference of the earth. So up to a third of the planes and half of all the satellites in a plane could hover

over the Pacific Ocean at any given time. A typical LEO constellation would make up about 22-28

orbital planes with 5-72 satellites per plane or 375-1584 satellites in total5. So about 8 planes and

39 satellites per plane or about 321 satellites could be wasting their capacity while idling over the

Pacific. Having 300+ nodes in a distributed ledger with virtually unlimited speeds to interconnect

them is clearly a resource worth exploiting.

One major issue with these networks is that adding more capacity by sending up more satellites

to increase coverage also means that there is more waste in terms of periods where the satellites

5These numbers are based on the data in Table I in [17]
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are idle. Furthermore, these periods are predictable and cyclical so easy to identify and exploit

without any central coordination6, which is the key idea behind our approach, described next.

6 Protocol

Next, we discuss the different parts of our protocol: gossip, transaction processing, migration and

smart contracts.

All our protocols rely on the 2d-torus architecture of LEO ISL. Furthermore we define a

blockchain Service Area (SA) as a block of contiguous nodes (each node being hosted on a satel-

lite) over some geographic area with low terrestrial traffic load, such as the Pacific Ocean. All

satellites in the constellation may communicate with each other through the one-hop architecture

of the 4 ISL links (see Figure 1), but broadcasting is only done in the service area, and only nodes in

the service area take active part in processing transactions and maintaining up-to-date blockchain

state. Owing to the orbital movement, the set of nodes that are in the service area keeps chang-

ing, so we need to do continuous migrations of the blockchain ledger to nodes that move into the

service area. Note that the nodes currently in the service area do not need to be informed about

the new nodes moving into the service area, because the movement of every satellite is completely

predictable and so each node in the service area can independently determine when it will move

out of the service area and which node will enter to take its place.

6.1 Gossip and Routing

Updates on one node need to be broadcast efficiently to other nodes in the blockchain cluster to

ensure the window of inconsistency is kept small. At the same time a single path to distribute

updates can be a single point of failure, e.g. if all updates go through a central node. So, for

reliability most blockchain systems implement some form of gossip protocol [7]. These protocols

are modeled after epidemic virus infection spread in a human population: if infected, you then

infect your nearest (uninfected) neighbors who go on to infect their (uninfected) neighbors, while

an encounter between two infected people does not propagate the virus further. Typically a handful

of neighbor nodes are configured to propagate gossip messages to. Care is taken not to propagate

to a neighbor that sent you the broadcast message. A message that has already been seen, e.g.

previously received by a different neighbor, is not propagated again.

The gossip protocol is also efficient, in the sense that N nodes can be synchronized in O(logN)
iterations despite node failures and data losses in transmission [7]. The gossip protocol on a torus

(which is the scenario that matches LEO satellite constellations) was analyzed in [13]. Improved

gossip protocols specifically for use in blockchains were proposed and evaluated in [1], [10],

and [19].

In a LEO constellation architecture following the +GRID ISL structure the neighbors are sim-

ply the north, south, east, and west connections. If a message comes from one direction it is

propagated into the other three, and previously seen messages are dropped. Furthermore we re-

strict propagation to within the service area we defined, typically a grid but it could have any shape

as long as all the nodes in the service area are contiguous. All messages traversed also receive

6each satellite node can determine independently when they are above a certain geographic area without a need for

external communication
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the gossip due to the one-hop communication structure, ensuring the entire service area receives a

broadcast efficiently.

Communication within an orbital plane tends to be more reliable and thus more nodes are

reached within a time unit if west/east spreading is prioritized but propagation can be done con-

currently in all directions.

In some cases a node outside the service area may want to trigger a broadcast within the service

area or simply execute an operation on any node that is closest within the one-hop structure and at

the same time is currently in the active service area. Depending on where the broadcasting node is

located and how the service area is configured the shortest path to a target could be in the opposite

direction using the wrap-around nodes of the 2d-torus.

For instance a transaction may be created from any node but needs to be executed in a node

in the current service area and the leader node that orders transactions then broadcasts the ordered

transactions within the service area only.

Changing the leader node could lead to disruption in transaction processing and hence we want

to do that as infrequently as possible. Thus a leader is not dropped until it leaves the service area.

The leader’s identity is also broadcast through the gossip protocol within the service area. To

optimize communication we limit the nodes that can be leaders to a single row, the leader row,

i.e., the nodes in a selected orbital plane that are within the service area. In theory, it is sufficient

for only the leader row nodes to know the identity of the leader, as all other nodes could send

messages to the leader via the nodes on the leader row. The fewer the nodes that need to know who

the present leader is, the smaller the window of downtime when a new leader is elected (details of

the method of electing the new leader node are given in Section 6.3). After the new leader node

has been elected but before the current leader node has exited the service area, if the current leader

node receives any messages intended for the leader, it can simply forward them to the new leader

node.

6.2 Transaction Processing

Transaction processing is at the core of our protocol as it is what ensures eventually consistent dis-

tributed states and availability even in the case of partial failures. A survey of blockchain consensus

algorithms may be found in [9]. Distributing state across a large area becomes even more important

in an ISL network where only single node hops are possible. As we have previously mentioned it

is enough to contact any node (satellite) currently in the service area to read the current state.

State here is simply a key-value database where the key is a string and the value is an arbitrary

object defined by the application, e.g., a JSON dictionary. The state is updated with transactions, a

transaction being defined as an ordered list of atomic read and write operations on the state. Each

such operation either succeeds or fails. Transactions can be submitted by any node in a constella-

tion and executed by any node in the service area. However, the order in which transactions are

executed is kept consistent across the constellation.

The ground truth of the order of all transactions is logged in a blockchain ledger, replicas of

which are maintained by all the nodes in the service area. The content of a block in the blockchain

is the read and write operations for the transaction as well as the hash of the previous block in the

blockchain. Hence the validity of transactions can be independently verified by any node in the

service area. The state is maintained separately but logs the block id of the last transaction that

made an update to the state. Whenever a key in the state is written to, the version is bumped up
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and all read operations in transactions note which version they read. Note that a transaction can

span many keys in the state, e.g., read from one state key and write into another.

The processing of a transaction is described in full below.

1. A transaction is submitted by any node in the constellation. It is then routed via ISL to the

nearest service area prioritizing within-plane hops. Note that if a service area is defined to

span the full set of orbital planes this routing step only requires within-plane routing.

2. The node within the service area that receives the transaction executes it locally without

writing to the ledger (blockchain) or state. This is done by reading and writing to a separate

in-memory copy of the state to ensure the transaction is valid assuming: (a) the node’s state

is up to date, and (b) the transaction does not rely on state that has since been updated,

i.e., there is no version mismatch between the read key and the key in the state of the node

executing the transaction.

3. If local execution succeeded, the node forwards the transaction to the leader node for order-

ing.

4. The leader node attaches a sequence number (which is global to the constellation) and then

broadcasts the transaction, or a set of ordered transactions, to all the nodes in the service area

using the gossip protocol7.

5. A node receiving the transaction broadcast will validate the transactions in sequence and

write the transactions that succeeded to the blockchain as well as update the state and key

version numbers accordingly. The same verification as in the local execution of the transac-

tion is performed with the difference that the validation is done in an order mandated by the

leader node as opposed to the time of arrival.

6. When submitting a transaction, a transaction ID is generated and the submitter may query

any node in the service area to check whether a transaction completed successfully. A suc-

cessfully completed transaction including all its read and write operations are written into

the blockchain and the state is updated accordingly.

The messages passed during processing of a transaction can be seen in Figure 2.

6.3 Service Area Migration

They key aspect of our protocol that sets it apart from other blockchain systems is that migration is

not only done to recover from failures but also done periodically and continuously as the satellites

circle around in their orbits and enter and leave the service area. Therefore it needs to be very

efficient and cause minimal disruption to transaction processing.

The migrations are complicated by the fact that not only do we need to make sure the state

and the blockchain migrates properly but also that the leader role migrates as well, which includes

migrating in-memory state of the old leader to the new leader, and the election of a leader using a

consensus protocol.

7This is similar to the Ordering service process described at https://hyperledger-fabric.

readthedocs.io/en/release-2.2/txflow.html
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Figure 2: Transaction route execute, order, and commit (gossip) message passing.

As a set of nodes are about the leave a service area and another set is about to enter the service

area the following steps, which we refer to as neighbor migration, are performed:

1. If the current leader is among the nodes that are leaving the service area, a new leader is

elected. The old leader simply sends a message to the new leader that it should take over

the role as leader. The leader election can only happen within a preconfigured orbital plane

and thus the same row in the ISL torus. The new leader is the node furthest to the east in the

leader row inside the service area. If that node does not respond the one west of it is elected

and so on. A more formal ring leader election algorithm may also be executed. Once a new

leader has been elected, the newly-elected leader broadcasts that it has taken up the role of

leader within the service area using the gossip protocol.

2. Each node about to enter the service area synchronizes and updates their state and blockchain

with their neighbor directly to the west already inside the service area. Only the blocks in the

blockchain that were appended after the last rotation (of these nodes) in the service area need

to be retrieved, and this communication is efficient as it is a single hop. Furthermore, all the

nodes across all orbital planes that are about to enter the service area can do this migration

concurrently and using different target nodes to synchronize from. This again makes the

migration operation scalable and efficient.

3. Finally when the migration is complete the west-most nodes in the service area orbits can

drop out, and the borders of the service area can be moved to include the nodes that just

migrated into it. Note that the timing of these steps can be predicted within each node, based

on the location of the nodes, and thus there is no need to send messages to trigger these steps.

In order for the new nodes (those just entering the service area) to execute transactions locally

they need an up-to-date version of the state as well as the blockchain. For them to write into

the ledger they also need to know the last known transaction sequence number so they can buffer

incoming ordered transactions if they arrive out of order. Finally, if a new node is the new leader,

it also needs to have an up-to-date version of the global sequence counter assigned to transactions

that are to be ordered.
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6.4 Smart Contracts

To be able to test our transaction processing infrastructure better, we also provide a smart contract

programming construct that allows us to define smart contracts. A smart contract is simply an

interface with methods that read and write from the state maintained in the blockchain, as well

as define what the structure of the state is. Each method when executed generates a transaction

comprising an ordered list of read and write operations that can be submitted into the constellation

for processing and that will be written to the ledger with the eventually consistent guarantees.

Below is an example of a smart contract defining a bank account contract with the ability to

transfer money between accounts.

class Contract:

def call(self, contract, op, args):

self.transaction = Transaction(contract=contract)

getattr(self, op)(**args)

return self.transaction

class AccountContract(Contract):

def create(self,balance=0):

self.transaction.write(str(uuid.uuid4()), {"balance": balance})

def transfer(self,from_account=None, to_account=None, balance=0):

value, _ = self.transaction.read(from_account)

value["balance"] = value["balance"] - balance

self.transaction.write(from_account, value)

value, _ = self.transaction.read(to_account)

value["balance"] = value["balance"] + balance

self.transaction.write(to_account, value)

def register(name, clazz):

contracts[name] = clazz

register("AccountContract",AccountContract)

## Example Usage:

## transaction = invoke_contract("AccountContract",

## "transfer",

## {’from_account’: account1,

## ’to_account’: account2,

## ’balance’:2})

def invoke_contract(contract, op, args):

return contracts[contract]().call(contract,op,args)

7 Simulation and Visualization

To be able to test transaction processing and smart contract execution in a constellation in motion

we developed a simulation using Python and a Web visualization.

In the simulator we define ISL communication paths such that each node can only communi-

cate with its immediate neighbors to the north, south, west and east. Each node has a (x, y) grid

coordinate representing satellite x in an orbital plane y. A service area defines a range of x values

and a range of y values that may be updated at any point in the simulation to account for orbital

movements.

Since a constellation may have thousands of nodes that can all communicate with each other

concurrently and independently, we designed the simulator to use as few resources as possible

while still being able to run realistic transaction processing scenarios and scale up to large constel-
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lations. Each orbital plane is implemented as a separate Python process that exposes a REST API

to communicate with other orbital planes (in north-south links). Inside an orbital plane (west-east

links) all communications are done with a thread pool. In general a good size of the thread pool is

the number of nodes in the orbital plane, but it can also be set based on load.

Each node writes to its own copies of the state and blockchain, both of which are represented

by JSON files in the simulator. When a node wants to send a message to another node it simply

specifies the (x, y) coordinates of the target and the simulator will use a combination of one-hop

messages within the thread pool and REST APIs to reach the target using the routing and gossip

protocol defined previously.

At any time, a node can be asked to synchronize its state with its neighbor to the west. Similarly

any node can be asked to assume the role of a leader. Nodes within the current service area can

execute and validate transactions locally and submit validated transactions to the leader node for

ordering. The leader node can sequence transactions and broadcast the sequenced transactions to

all service area nodes using the gossip protocol described previously.

For evaluation purposes we define a smart contract that can create accounts and transfer money

between accounts, as well as monitor the balance of each account as the satellites move around

their orbits.

A web simulator shows a grid of the 2d-torus with the current state in each node for a given

account. It also shows the current nodes in the service area (yellow), the nodes outside the service

area (red), the nodes in the leader row (green) and the current leader (pink).

The web simulation moves all satellites one step west every time interval (configured to 10s).

At any time, transactions may be executed, such as creating new accounts and transferring money

between accounts. The service area follows the rotation of the earth to always reside above the

Pacific Ocean.

We use a demo constellation of 4 orbital planes and 28 satellites per plane, where 6 satellites

across all 4 planes cover the service area at any given time.

A screenshot of the visualization can be seen in Figure 3.

8 Communication Evaluation

We now take a closer look at the communication overhead of our solution. In particular we are

interested in the total number of messages generated per transaction for different sizes of service

areas. We use a 28 × 4 grid of total nodes, and always use all orbital planes but vary the range of

satellites in a given plane (x-range) that are in a service area. Varying the x-range from 5 nodes

to 10 nodes results in service areas having 20 to 40 nodes. We use 70 threads in each simulation

process that represent an orbital plane.

The evaluation involves executing 3 transactions, 2 account creations and then a transfer be-

tween the newly created accounts for each period, or rotational position of the earth. We define

28 rotational positions, meaning that after 28 periods the satellites will be back in their original

positions.

We keep the service area over the same geographic patch (Pacific Ocean) so that new nodes

enter and leave the area with every rotation. For each configuration we do 10 full cycles of rotations

around the earth and then measure the number of messages sent in the system. A message that is

routed between nodes is counted as a new message for each hop, as all communication is single hop
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Figure 3: Simulation Web visualization screenshots of periods 1, 4, 6, and 8. Top: Torus cells,

Bottom: Earth overlay. Red node: outside of service area. Yellow node: inside service area. Green

node: leader row node. Pink node: leader.

according to the LEO ISL setup previously described. The evaluation configuration is summarized

in Table 1.

Table 1: Evaluation Configuration.

Transactions 841

Migrations 1120

Earth Cycles 10

Cycle Periods 28

Service Area Nodes {20, 24, 28, 32, 36, 40}
Transaction Commits {16820, 20184, 23548, 26912, 30276, 33640}

In Figure 4 we observe that the number of messages grows linearly with the size of the service

area and that the gossip messages dominate the communication overhead for transaction process-

ing. We note that the transaction commits also grow linearly with service area nodes as per the

virtual synchrony design. Hence, adjusting the size of the service area is an effective way to limit

both communication and I/O processing overhead.

Table 2 shows the proportion of different message types, again highlighting the dominance of

gossip messages. Only the gossip messages change based on service area size. The route execute

message is sent if the sending node cannot execute the request, e.g. it is not in a service area and is

asked to execute a transaction. The sync blocks message is a variant of this where a node is asked

by another node to sync state with its neighbor because it is about to enter the service area. In a live

deployment the node would know internally when it needs to synchronize state as it is aware of

its orbital path. The sync state message actually synchronizes the blockchain and its state as well

as in-memory state with its neighbor to the west to be able to participate in transaction execution
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Figure 4: Total messages and gossip messages (for transaction commits).

within the service area.

Table 2: Message proportions in 7× 4 grid service area.

Message Percent of total number

of messages

gossip 86%

route execute 9%

execute transactions 1%

order transaction 1%

sync blocks 1%

sync state 1%

Figure 5 shows the gossip message distribution for satellites across orbital index and plane.

The dip in plane 1 is because the leader originating gossip is in this plane (the leader row).

9 Conclusions

We have demonstrated how a blockchain can be hosted efficiently on-board LEO satellites to offer

eventually consistent guarantees for distributed transactions and smart contracts. We believe that

the importance and utility of such data infrastructure will increase in the future when satellite nodes

are upgraded in compute and storage capacity to avoid expensive round-trip costs and to meet the

stringent latency guarantees of 3GPP NTN non-transparent direct-to-cell communication.
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Figure 5: Gossip message distribution across orbital indices and orbital planes across all evaluation

runs.

There are many use cases for the data infrastructure proposed and evaluated in this work. An

example of an innovative application that uses the capability of such infrastructure is fast, on-

demand authentication to a new MNO through an SNO via a smart bandwidth contract that auto-

mates roaming.
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