A METHOD FOR OPTIMAL EDGE ORCHESTRATION ON CABLE NETWORKS
USING REINFORCEMENT LEARNING

INVENTOR:

RAHIL GANDOTRA



Date: June 21, 2023
Submitter: Rahil Gandotra

Title: A method for optimal edge orchestration on cable networks using reinforcement learning

Background:

Machine Learning

Machine learning (ML) is a part of artificial intelligence that aims to develop methods that
leverage data to improve performance on some set of tasks. ML belongs to a category of
algorithms that enables software applications to become more accurate in predicting outcomes
without being explicitly programmed. The basic premise of machine learning is to develop
algorithms that can receive input data and use statistical analysis to predict an output, while
updating outputs as new data becomes available. For simple tasks assighed to computers, it is
possible to program algorithms instructing the machine how to execute all steps required to
solve the problem at hand; no learning is needed by the computer. For more advanced tasks, it
can be challenging for a human to manually create the needed algorithms. ML algorithms build
a model based on sample data, known as training data, in order to make predictions or
decisions. ML algorithms are used in a wide variety of applications, such as in medicine, email
filtering, speech recognition, computer vision, agriculture, driverless cars, and finance, where it

is difficult or unfeasible to develop conventional algorithms to perform the needed tasks.

ML can be divided into three broad categories of algorithms depending on the nature of
feedback available to the learning system:

1. Supervised learning: The system is presented with example inputs and their desired
outputs as training data, using which a mapping function is approximated to predict the
output for new input data. Classification and regression algorithms fall under the
category of supervised learning.

2. Unsupervised learning: No training data is provided to the system, leaving it on its own
to discover patterns and find structure in its input. Clustering and association algorithms

belong to the category of unsupervised learning.



3. Reinforcement learning: The system learns by interacting with a dynamic environment in
which it performs a certain goal and is provided feedback using a system of reward and

punishment, with the goal being to maximize its reward and minimize its penalty.

Reinforcement learning

Reinforcement learning (RL) framework is modeled on the problem of optimal control of
Markov Decision Processes. The main elements of an RL framework include — (i) the agent or
the learner, (ii) the environment the agent interacts with, (iii) the policy that the agent uses to
take an action, and (iv) the reward signal observed by the agent upon taking an action. A typical
RL agent interacts with its environment in discrete time steps. At each time t, the agent takes an
action a: transitioning the environment from state s; to st+1. Based on the new state st1, a
reward r+1 is determined and associated with the transition (s, at, St+1). The long-term goal of

the RL agent is to learn a policy which maximizes the expected cumulative reward.

Enwr onment

Re Warq
Interpreter
%’ \

Agent

Action

Fig. 1 Typical framing of a RL scenario

[Source: https://en.wikipedia.org/wiki/Reinforcement learning]

RL algorithms are categorized into two broad categories: model-based and model-free. Model-
based algorithms involve the agent explicitly referencing a model of the environment to choose
its optimal policy. Model-based approaches include Model-Based Value Expansion (MBVE), world

models, and Imagination-Augmented Agents (I12A). On the other hand, model-free algorithms are



based on trial-and-error experience for constructing its optimal policy. Model-free approaches
include policy optimization techniques such as policy gradients and Q-learning based techniques
such as Deep Q Neural Network (DQN). In case where an accurate model of the environment is
not available as part of the problem statement, model-free algorithms are more suitable than
model-based algorithms. However, model-free algorithms are statistically less efficient as
compared to model-based algorithms since information from the environment is combined with

previous, possibly inaccurate, estimates about state values [1].

Edge computing

Edge computing is a new paradigm that enables computing at the edge of the network, closer to
the source of the data. This involves integrating resources which are closer to the user in terms
of geographical distance or network distance to provide computing, storage, and networking
services for application deployments [2]. Computing tasks such as processing, storage, caching,
and load balancing can be performed on the data sent to and from the cloud at the network edge.
Some of the applications of edge computing include home automation systems, cloud gaming,
XR, connected or autonomous cars, Industry 4.0 (smart industry), and smart cities. Computing at
the edge allows for lower response speeds, near-real time processing, reduced load on network

bandwidth, increased privacy, and reduced energy consumption.

Edge Computing

01100 O,

41101000 o1
1101100 o117

CLOUD DATA CENTER

INTERNET OF THINGS

Fig. 2 Edge computing



[Source: https://innovationatwork.ieee.org/real-life-edge-computing-use-cases/]

The edge must be designed in a way such as to handle tasks efficiently, reliably, and securely.
Typically, edge devices have limited computing resources as compared to the cloud, and therefore
a major challenge for the network operators is to find the most efficient way to orchestrate edge

network and computing resources while satisfying the needed quality of experience (QoE)

requirements.

Problem statement:

Currently no method exists to utilize reinforcement learning for orchestrating computing services

onto cable edge networks.

Proposed solution:

Using reinforcement learning technique for the cable edge orchestration agent to determine the

optimal computing node and network path.

RL algorithm

Edge orchestrator

Edge Node 1 Edge Node 2

Edge Node N

Fig. 3 RL for edge orchestration

Parameters to be considered for optimal RL-based edge orchestration —



1. Computing parameters — Memory, storage, CPUs, GPUs
2. Networking parameters — Bandwidth, latency, jitter, packet loss

3. Business parameters — Revenue, cost

We also propose a new function in the cable network core — intelligent cable edge orchestrator
(ICEQ). The services provided by ICEO include —
1. Optimal prediction for the placement of a computing task to the most appropriate cable

edge node

2. Collecting near-real time information from the network to infer the expected

reward/penalty

Edge RL Edge Edge
Orchestrator Algorithm Node #1 Node #2

Request to orchestrate < Fetch and save current computing and network parameters >

new edge computing service

Y

Request optimal placement
of new edge task

RL Apply
Computation / business parameters

Response of optimal
edge node placement

Orchestrate edge task

\4

Fig. 3 Proposed interactions between Edge Orchestrator and RL Algorithm for optimal edge node placement

Benefits:
- Efficient use of available edge computing resources in cable networks
- Automated streamlining of edge application locations

- Novel application of ML for cable networks

Existing solutions:

None



Interested parties:

Edge-computing service providers, MSOs

Impact:

Efficient use of limited edge compute. Evolution of cable edge network.

References:

[1] P. Dayan and Y. Niv, “Reinforcement learning: The Good, The Bad and The Ugly,” Current opinion in
neurobiology, vol. 18, no. 2, pp. 185-196, Apr. 2008.

[2] K. Cao, Y. Liu, G. Meng, and Q. Sun, “An Overview on Edge Computing Research,” IEEE access, vol. 8, pp.
85714-85728, May 2020.



