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Background and Motivation 

Delivering more bandwidth/capacity has been the top research focus in optical access 
network, however, new services like 5G mobile X haul, edge computing, AR/VR Gaming, 
Tactile Internet and UHD video distribution, are placing additional requirements on access 
networks. Characteristics like low latency and reliability will be increasingly important for 
future access networks. As we move to the next-generation of access networks, ultra-low 
latency transmission is increasingly gaining importance in access networks for emerging 
time critical services. More deterministic and reliable latency management are being 
demanded.  

Different services have different latency requirements, for instance, Cloud Gaming requires 
<40-ms latency for good experience, Ultra-Reliable Low Latency Communication requires 
<1-ms e2e latency, while Enhanced Mobile Broadband would be more relax on delay (about 
100ms latency). Based on these requirements, the latency contributed by optical access 
network, which could be the “last-mile” carrier for these services, can be stricter. For 
instance, a 1-10 ms e2e latency is required for F1 mobile fronthaul interface, while this 
number reduces to only few 100 μs (<1ms) if we move to lower layer function-split for 
mobile fronthaul. 

As a point-to-multi-point system, Passive Optical Network (PON) has been one of the 
dominant architectures to provide bandwidth sharing between different types of services [1]. 
In generally, dynamic bandwidth allocation (DBA) is used in PON to allocate traffic 
bandwidth in upstream based on the demands and requests from users (ONUs). Different 
DBA algorithms or strategies has been proposed to support the upstream bandwidth 
sharing [2], i.e., Interleaved Polling with Adaptive Cycle Time (IPACT) is widely studied and 
used for Ethernet PON, linear fixed bandwidth allocation with high priority is proposed for 
mobile PON that support mobile fronthaul services. Some DBA algorithms differentiate 
users into groups that support guaranteed bandwidth or non-guaranteed bandwidth. Other 
DBA schemes with different QoS tiers are also supported in ITU-T PONs.  

Theoretically, different DBA algorithms would be suitable for different use scenarios or 
traffic conditions. In addition, the “optimal” DBA scheme for the same network can vary from 
time to time as the traffic load during a day or week can change dramatically. When 
considering the network delay, different users/service may have different latency 
requirements. When traffic loads from each user changes, the corresponding network 
latency also changes. As mentioned above, many emerging services require more 
deterministic and reliable latency. Furthermore, it is desired to achieve higher network 
efficiency when the network when maintaining low latency for specific users. Therefore, an 
intelligent bandwidth allocation that can perceive or sense the network environment 



changes and correspondingly updates its bandwidth allocation policy smartly to manage the 
latency for different users would be very attracting. 

This disclosure describes a novel method for intelligent bandwidth allocation in PON by 
using machine learning for latency management. The specific method uses reinforcement 
learning scheme to proactive update the bandwidth allocation policy to control or manage 
the latency for specific users. The proposed method uses the traffic information as well as 
network parameters as the State input to the core control unit Agent. The Agent updates the 
bandwidth allocation policy accordingly, which will be the output Actions to the OLT in PON. 
These Actions may include updates of the network bandwidth allocation algorithms, 
adjusting ONU priorities or changing the bandwidth allocation parameters and so on. As a 
result, the PON will measure the network performance such as latency, throughput or 
efficiency and return these results to the Agent as the Reward feedbacks. The Reward can 
be positive or negative based on the results. The training process is based upon the input of 
the Rewards, and the reinforcement learning algorithms will decide to reward or punish the 
model based on its output Actions. 

Invention Idea 

The general idea of the disclosure is shown in Fig. 1, in which we describe the problem and 
the solution for intelligent bandwidth allocation in PON. 
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Fig. 1. A two-layer implementation by proposed intelligent bandwidth allocation in PON with 
different time scales. Then implementation in PON is also plotted here. 

In our invention disclosure, the proposed intelligent bandwidth allocation in PON is realized 
by a two-layer implementation structure. In the lower layer, fast dynamic bandwidth 
allocation is implemented in μsec to msec scale for real-time bandwidth assignments 
according the actual bandwidth request from ONUs. On higher layer, we have the intelligent 
bandwidth allocation agent to update the DBA algorithm (policy) in the sacle of hundred 
msec to sec and even minutes range based on the inputs from the network. The update 
actions are implemented in a non-real-time manner, which is based on the reinforcement 
learning algorithms.   

A more detailed implementation for intelligent bandwidth allocation agent is shown in Fig. 2. 
Reinforcement learning (RL) has demonstrated prominent performance in strategy selection 
and optimization tasks, such as AlphaGo [3], professional gaming [4] and interference 
avoidance [5], to name a few. The RL agent can obtain positive/negative reward on its 
executed action under a certain state through interaction with the environment.  

The intelligent bandwidth allocation is realized by the reinforcement learning process, in 
which consists of an intelligent bandwidth allocation Agent, the PON Environment and the 
implementation links (State, Action and Reward). The proposed method uses the traffic 
information as well as network parameters as the State St input to the core control unit 
Agent. The Agent updates the bandwidth allocation policy accordingly, which will be the 
output Action At to the OLT in PON. These Action At may include updates of the network 
DBA algorithms, strategies, adjusting ONU priorities or changing the bandwidth allocation 
parameters and so on. As a result, the PON will implement the updated DBA policy and 
measure/monitor the network performance such as latency, throughput or efficiency and 
return these results to the Agent as the Reward Rt feedbacks. The Reward can be positive 
or negative based on the results. The training process is based upon the input of the 
Rewards, and the reinforcement learning algorithms will decide to reward or punish the 
model based on its output Action At. In such an implementation flows, the St, At and Rt may 
contain multiple variables or a set of elements. The training process may take multiple 
iterations or be implemented continuously with online learning.  



 

Fig. 2 The implementation process flow of reinforcement learning for intelligent bandwidth 
allocation of PON 

Implementation  

In general, there are two different implantation reinforcement learning algorithms, including 
table-based Q-learning and network-based Deep Q-Network. Fig. 3 and 4 show two 
implementation examples as Q-learning and Deep Q-Network. Q-learning is a simple yet 
quite powerful algorithm to create Q-value table for the operation Agent; while deep Q-
learning use a multi-layer neural network to approximate the Q-value function when size of 
Q-value table is too large or Q-table is not available. The state is given as the input for the 
neural network and the Q-value of all possible actions is generated as the output. 
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Fig. 3. Table-based Q-learning method 

 

 

Fig. 4 The Q-network based deep Q-network method 

 

Examples 

 

Reward (Network Performance: 
Latency, Throughput, Efficiency)

Table Q-Network

State (Traffic 
Information: queue 

size, Latency, Load, 
Request)

Action (DBA Policy: 
Strategies, Parameters, 

Schemes )



 

 

0 20 40 60 80 100 120 140

5

10

15

20

25

30

35

40

 

 

T
a

rg
e

t 
O

N
U

 L
a

te
n

c
y

 (
m

s
)

Simulation Time (T)

 Fixed Wmax Parameterss

 RL-based Wmax Parameters (c)

(d)



 

Fig.  5. The simulation setup and results: (a) the simulation setup; (b) the SARSA algorithm 
used in the simulation; (c) simulation of RL to target 3-ms latency; (d) the Q-table value 
obtained; (d) the latency performance with dynamic traffic load. 

Figure 5 shows one implementation example with simulation setup and results obtained. 
We simulated 32 ONUs in the NG-EPON system with two wavelengths each carrying 25 
Gb/s data, as shown in Fig. 3 (a). We assume 1 μs for guard interval time according to our 
experimental verification above. As such, a total of 50-Gb/s capacity is shared by the 32 
ONUs using first-fit scheme for DBA on the two wavelengths. All 32 ONUs have random 
RTTs within the range of 100 to 200 μs. ONU2 is the target ONU that is enabled with 
latency management based on RL method. All traffic is generated by an Ethernet traffic 
generator model that is described in [6], where self-similar traffic is generated based on the 
aggregation of multiple streams, each consisting an alternating Pareto-distributed ON/OFF 
period [6]. The Ethernet traffics are with the packet size of 64 to 1518 bytes, and maximum 
traffic load for each ONU is 2 Gb/s. The default Wmax for simulation is set at 30000 bytes. 
The Q-table update interval and Wmax adjustment interval are all set as 0.8 s.  

The algorithm for the implemented SARSA learning is designed as shown in Fig. 5 (b). Fig. 
5 (c) shows the latency management results at the fixed load rate of 1.0 at 2 Gb/s. To verify 
the latency management capability, we set two target latency values at 3 ms and 1 ms.  It is 
seen that in result of Fig. 5 (c) the target ONU2 follows the latency targets < 3 ms and < 1 
ms with our latency management. As a comparison, we plot the latency performance under 
a fixed Wmax setting to present that the variance of latency is significantly reduced by 
employing latency management.  

Fig. 5 (d) shows the Q value distribution of the Q-table after training with 1-ms target latency 
and different traffic loads, we can see that the peak data rate of upstream burst traffic can 
be as high as 5.5 Gb/s. Finally, the latency management performance with dynamic traffic 
loads is shown in Fig. 5 (e). By simulating the traffic load changes based on the trend 
obtained from a real user traffic behavior during a day, with a target latency of 1 ms, the 
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determinism and reliability of latency management are demonstrated by the simulation 
result that the average latency of ONU2 is below 1 ms, with a peak latency about 2 ms due 
to bursty traffic. 

Reference: 

[1] F Effenberger, et al., IEEE Communications Magazine 45 (3), S17-S25 (2007). 

[2] B. Skubic, et al., Convergence of Mobile and Stationary Next-Generation 

Networks, 227-252 (2010). 

[3] J. X. Chen, Comput. Sci. Eng. 18, 4 (2016). 

[4] V. Mnih, et al., Nature 518, 529 (2015). 

[5] Q. Zhou, et al., Opt. Lett. 44, 4347-4350 (2019). 

[6] G. Kramer, et al., IEEE Communications Magazine, 40. 74-80 (2002). 

 
 


	first page for publication
	Provisional_Application_61569PROV
	First_Page_61569PROV
	Reinforce learning for Intellegent DBA


